PDA

View Full Version : I1 subclade table based on 60K FtDNA samples



Expredel
26-04-18, 02:21
###################### I1a3 I1a2 I1a1 I1a I1b I1c I1d I1e I1f I1 I1-* !ISOGG other all
Afghanistan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97.56 41
Albania 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 4.00 2.00 88.00 50
Algeria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.68 151
Armenia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 94.53 384
Austria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.88 5.88 1.47 81.86 204
Azerbaijan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.68 2.68 0.00 92.86 112
Bahrain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 178
Belarus 0.23 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.91 1.59 0.68 86.17 441
Belgium 0.37 1.87 0.75 0.00 0.37 0.37 0.00 0.00 0.00 7.12 11.24 1.87 79.03 267
Bosnia and Herzegovina 1.06 0.00 1.06 0.00 0.00 0.00 0.00 0.00 0.00 5.32 7.45 0.00 55.32 94
Brazil 1.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.47 0.00 85.29 68
Bulgaria 0.00 1.58 1.27 0.00 0.00 0.00 0.00 0.00 0.00 1.90 4.75 0.63 73.10 316
Canada 0.56 2.78 1.11 0.00 0.00 0.00 0.00 0.00 0.00 6.67 11.11 0.00 80.56 180
China 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 80
Croatia 0.98 0.00 1.96 0.00 0.00 0.00 0.00 0.00 0.00 4.90 7.84 0.00 61.76 102
Czech Republic 0.44 1.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.82 6.58 0.44 80.26 228
Denmark 0.21 2.09 4.18 0.84 0.00 0.21 0.00 0.00 0.00 26.57 34.10 0.84 56.28 478
Egypt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97.22 180
England 0.52 2.03 1.51 0.21 0.08 0.08 0.00 0.02 0.00 11.35 15.88 1.42 71.36 6107
Estonia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.25 6.25 0.00 90.62 64
Finland 0.04 1.23 6.21 0.07 0.00 0.00 0.00 0.00 0.04 16.94 24.52 1.26 73.27 2851
France 0.22 0.43 0.81 0.00 0.11 0.16 0.00 0.00 0.00 7.61 9.45 0.97 83.53 1852
Georgia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 95.61 456
Germany 0.40 2.37 0.95 0.09 0.03 0.12 0.00 0.00 0.00 9.77 13.76 1.33 75.01 3458
Greece 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 1.15 0.19 86.81 523
Hungary 0.15 0.15 0.45 0.15 0.00 0.00 0.00 0.00 0.00 5.88 6.79 0.45 78.58 663
India 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.72 354
Iran 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.13 96.61 177
Iraq 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.21 0.10 98.87 972
Ireland 0.03 0.39 0.43 0.07 0.00 0.02 0.00 0.00 0.00 4.52 5.45 0.62 83.51 6113
Italy 0.28 0.78 0.28 0.21 0.00 0.00 0.00 0.00 0.00 2.49 4.06 0.36 89.96 1404
Japan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 86
Jordan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.93 0.00 98.15 108
Kazakhstan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.26 0.00 98.70 385
Kuwait 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 99.61 509
Kyrgyzstan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.96 1.96 0.00 98.04 51
Latvia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.79 95.28 127
Lebanon 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 1.23 0.00 98.77 162
Libya 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 169
Lithuania 0.00 0.35 1.24 0.00 0.00 0.00 0.00 0.00 0.00 2.12 3.71 0.00 92.76 566
Mexico 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.40 1.40 0.47 85.98 214
Moldova 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97.83 46
Morocco 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 101
Netherlands 0.60 3.00 1.50 0.30 0.00 0.00 0.00 0.00 0.00 12.59 17.99 1.65 70.16 667
Northern Ireland 0.00 1.66 1.47 0.00 0.00 0.00 0.00 0.00 0.00 3.87 7.00 2.39 76.43 543
Norway 0.13 4.76 7.13 0.56 0.00 0.00 0.00 0.00 0.00 21.84 34.42 2.00 59.01 1598
Oman 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100
Pakistan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 89
Palestinian Territory 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 108
Philippines 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 63
Poland 0.43 0.60 0.90 0.09 0.00 0.04 0.00 0.00 0.00 3.67 5.71 0.72 85.20 2345
Portugal 0.45 1.06 0.15 0.00 0.00 0.00 0.00 0.00 0.00 1.97 3.64 0.61 90.76 660
Puerto Rico 0.00 1.49 1.49 0.00 0.00 0.00 0.00 0.00 0.00 1.49 4.48 0.00 94.03 67
Qatar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 99.59 244
Romania 0.00 0.00 1.01 0.00 0.00 0.00 0.00 0.00 0.00 4.55 5.56 0.51 80.30 198
Russian Federation 0.19 0.73 0.84 0.23 0.00 0.00 0.00 0.00 0.00 1.92 3.91 0.19 90.30 2609
Saudi Arabia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.22 99.75 2790
Scotland 0.10 1.40 0.90 0.21 0.00 0.02 0.00 0.00 0.00 7.65 10.28 0.72 79.74 4863
Serbia 1.06 0.00 1.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.13 0.00 68.09 94
Slovakia 0.00 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.19 4.65 0.00 78.14 215
Slovenia 0.00 4.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.63 9.86 0.00 76.06 71
Spain 0.85 0.18 0.06 0.12 0.00 0.00 0.00 0.00 0.00 2.84 4.05 0.24 90.32 1653
Sudan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 189
Sweden 0.27 6.17 9.44 0.80 0.05 0.00 0.00 0.00 0.00 22.48 39.27 2.90 54.45 1864
Switzerland 0.20 2.61 0.80 0.40 0.00 0.20 0.00 0.00 0.00 6.21 10.42 1.60 77.56 499
Syrian Arab Republic 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.29 117
Tunisia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.26 136
Turkey 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.50 0.17 95.97 595
Ukraine 0.40 0.10 0.30 0.00 0.00 0.00 0.00 0.00 0.00 2.92 3.73 0.30 82.07 993
United Arab Emirates 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 490
United Kingdom 0.35 1.61 1.65 0.08 0.08 0.00 0.00 0.00 0.00 12.34 16.19 1.14 70.75 2544
United States 0.38 1.07 1.58 0.00 0.06 0.13 0.00 0.00 0.00 5.69 8.97 1.14 81.87 1583
Uzbekistan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.39 62
Wales 0.40 1.21 0.40 0.00 0.00 0.20 0.00 0.00 0.00 11.92 14.14 0.61 76.77 495
Yemen 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 98.43 318
ALL 0.23 1.21 1.44 0.13 0.02 0.03 0.00 0.00 0.00 7.01 10.08 0.85 81.61 60539

Haplogroup I subclades that couldn't be determined are listed under !ISOGG and are either I1 or I2. I suspect a lot of entries are from people with the 12 marker test, which probably doesn't predict any I1 subclades.

Edit: simplified table and fixed the I1a row.

I1a3_Young
26-04-18, 20:19
Thanks. It looks as I would expect. The Balkan Z63 (I1a3) branches have always been interesting. For some reason those branches flourished in those areas.

Expredel
27-04-18, 03:39
Thanks. It looks as I would expect. The Balkan Z63 (I1a3) branches have always been interesting. For some reason those branches flourished in those areas.
Unfortunately the sample size in the Balkans is too low for it to be reliable. Looks like I1a3 reliably peaks in the Netherlands and Spain.

I1a3_Young
27-04-18, 17:22
High frequency in the NL makes sense for the rate in the UK.

The Iberian clade is very noticeable in the Z63 research group.

I1a3_Young
02-05-18, 17:27
What's the difference between I1 and I1* in your table?

Expredel
03-05-18, 04:23
I1 contains all I1 samples that are not I1a, I1b, etc.

I1-* lists all samples including I1, I1a, I1b, etc.

Tomenable
04-05-18, 19:16
Percentage 85.20 for Poland = all Non-I1 haplogroups?

That would mean that Poland has 14.8% of I1, I think that's too high.

I1a3_Young
04-05-18, 20:02
Percentage 85.20 for Poland = all Non-I1 haplogroups?

That would mean that Poland has 14.8% of I1, I think that's too high.

Agreed. In theory shouldn't the I1*, ISOGG, and Other column total to 100?

Expredel
06-05-18, 03:14
Agreed. In theory shouldn't the I1*, ISOGG, and Other column total to 100?
My mistake, I didn't include the I2 column, so Other lists all non-I haplogroups.

I posted an I2 table here: https://www.eupedia.com/forum/threads/35987-I2-subclade-table-based-on-60K-FtDNA-samples

I1a3_Young
09-05-18, 17:18
I have taken the numbers generously compiled by Expredel to make the following tables:

1. Percent of I1a3 (Z63) of total I1 in a country (column K)

10093

2. Percent of I1a3 (Z63) of total population in a country (column L)

10094

England/Netherlands and UK/Germany similarity shows that Z63 was a small contingent of the Saxons.

Overall, Z63 was not as prolific as the other two main I1 branches.

I1a3_Young
09-05-18, 18:56
Percent of I1a2 within the I1 population (Z58, Z60, Z140, etc)
10098

Percent of population that is I1a2
10097

Note, not many subclades of I1 were identified in Slovakia, so the sample size is probably too small.

I1a3_Young
09-05-18, 19:12
Percent I1a1 of total I1 in a country (includes large branch of L22)
10099

Percent I1a1 of the population in a country
10100

I1a3_Young
09-05-18, 19:18
Here is total I1 percentage of the population by country, with the percent of the "big 3" in the total population shown in the right 3 columns.

10101

This makes it easy to see that England and Germany were close, with Viking settlement raising the I1a1 later.

I1a3_Young
09-05-18, 19:48
10102

Graphically presented, the breakdown of the big 3 branches as a total of I1 in a country.

Expredel
10-05-18, 00:45
Cool graph and interesting distribution of I1a3, looks like it has a significantly more southern distribution.

Wheal
10-05-18, 04:10
I would love to have you recommend more info on I1 since my husband and sons are from that HG.

I1a3_Young
10-05-18, 14:17
I would love to have you recommend more info on I1 since my husband and sons are from that HG.

What test indicated they were I1? Do you have a specific branch?

I1a3_Young
10-05-18, 14:21
Cool graph and interesting distribution of I1a3, looks like it has a significantly more southern distribution.

That is because Z63 appeared to have been at a higher frequency in the eastern Germanic tribes, who became part of the Goths that brought it through the Balkans, eastern Europe, Italy, France, and Iberia. They had quite an impact on the places they went.

And it is also more southern than the other I1 branches as they are more Scandinavian oriented while Z63 clearly had an original base of operations from the Netherlands through Germany and possibly western Poland.

L22 was heavy in the eastern Swedes I would guess, as Maciamo said they spread to Finland.

Wheal
10-05-18, 14:26
They are I-253, sorry, I haven't been able to drill down with a Big Y. I'm still trying to get the grandfather's full mt results from February. But they are from Holland.

I1a3_Young
10-05-18, 14:27
They are I-253, sorry, I haven't been able to drill down with a Big Y. I'm still trying to get the grandfather's full mt results from February. But they are from Holland.

This is based on STR test from FTDNA? Use the I1 subclade predictor at www.nevgen.org

Wheal
10-05-18, 14:58
https://www.eupedia.com/forum/image/png;base64,iVBORw0KGgoAAAANSUhEUgAABKEAAAGFCAIAAAC qoHf3AAAgAElEQVR4nOyd21cTyaL/9//Em28 ztpPe54Os85Z7P2b7T5nLdeedfasM9sZRs2IKCKCICAIKCJXRT GIEEEwIDcR5CZyRyIEJVyDJMZAsH8PuXRXdVV350aSzvezvg9K lK3rqpvV3XVnwQAAAAAAAAAAHrhT7EOAAAAAAAAAACAiAGPBwA AAAAAAAD6AR4PAAAAAAAAAPQDPB4AAAAAAAAA6Ad4PAAAAAAAA ADQDyF6vHfv3t27d /XX3/98ccfUwEAAAAAAAAARJQff/zx119/LSkpGR4ejq7Hs1gsubm5sY4vAAAAAAAAACQLv/7668bGRlQ8Xk9PDwbuAAAAAAAAAOD4aWtri7DHa2tri3WkAAAA AAAAACB50WLztHq8jY0NjOABAAAAAAAAQGyxWCyR8XgZGRmxjg sAAAAAAAAAJDs//fRTBDze8PBwrCMCAAAAAAAAACA1NTW1p6cnXI9XUlIS61gAAAA AAAAAAEhNTU3Nzc0N1 P9 uuvsY4FAAAAAAAAAIDU1NTUH3/8MVyP99NPP8U6FgAAAAAAAAAAUlMj4vFiHQUAAAAAAAAAACLwe AAAAAAAAACgH DxAAAAAAAAAEA/wOMBAAAAAAAAgH6AxwMAAAAAAAAA/QCPBwAAAAAAAAD6AR4PAAAAAAAAAPQDPB4AAAAAAAAA6Ad4PAA AAAAAAADQD/B4AAAAAAAAAKAf4PEAAAAAAAAAQD/A4wEAAAAAAACAfoDHAwAAAAAAAAD9AI8HAAAAAAAAAPoBHg8AA AAAAAAA9AM8HgAAAAAAAADoB3g8AAAAAAAAANAP8HgAAAAAAAA AoB/g8QAAAAAAAABAP8DjAQAAAAAAAIB gMcDAAAAAAAAAP0AjwcAAAAAAAAA gEeDwAAAAAAAAD0AzweAAAAAAAAAOgHeDwAAAAAAAAA0A/weAAAAAAAAACgH DxAAAAAAAAAEA/wOMBED cMlSYRmasWw6H6zDwkB26HI4t68yIsfBfp2IdwFBoXvZFZLn52 M6MJIFQ7I5ci qNro3sHs N4pC036oHLFtOt8ebAh6307H45L9jHaqQiEk2hn5TzpmBP1MPX zIXUnXCqStOZZtmbPZAxX/ocmy vhEndSAAICFRsG/weAAcF2m/lZoXdvw9XC6HDutI9W9psQ5tcMDjaSRpu89p SPbsqK/N5of63CFRjJ7vFPZpoWduaYQIqAPQq4rfm5edsmq w tacp1YNpv1SNW60By1RYAAM0odCfh8QA4DtJ ezhjP5Q Vh63026zLHqxbkkH9QRB8Gy/rfw51oEOAng8jSSrx/u91yaW/M/egm xvWtKsHcZfpLU46VdbF3wVmNJPOIUal1RO f2PwKHri2rt K3DFxTqAN/rhz56PQkX20BANCOgn2DxwMg hAvcA8d1glj3ml55/aUocK8IBpBz/ZIfsL0gOHxNJKsHi QwO7Fhwk5G5kkST0e74SkIsS6Qky7zVeXyYqdWwceW7UEAEhYF OwbPB4AUUY6Sc2z/VZlGmbab60BP ix9V44rlCGSXw4tdBBZyq66M0cJJjHU7ug1lzRWzaGRIh1RSin oVoCAKgBjwdAzBC7RYJruVnL/Mu08rf7vjPcCw2JMZQHjweU0Js5gMfTRTaGBDweACCOgMcDIEb 8s3nZ/xHG/ttyrX7tn 1W38ife642quGLFPB4QAm9mQN4PF1kY0jA4wEA4gh4PABiwz fr/meIs/a8yDWUElrXnI5t6wTA3XUh3v Rn 52bsAwpZ3qZZDl902Yy4lpoGmnc6rG5iwbjmc4lKeHrfTsWWdM FcYWN9EBXpwy82p3mVAxXW PW6n3TbDOZH2eGmn80wT1sAq b5zS5mzVFXdYdpvpeYJ6aI0hy7HlmWE UljyFEPsjMlmvD9iZsKxwWWWXC Lff Rb2ffspQQcTX43babYsjxmw63GLhWnv T8aF0pqX/bG39f7OOODmxD4VOm2knc4zjiza7NJdEOy2RVaWSEaxZWhKan/GeA8 lW0cEXdfUC4IQTwqwcSIipc/XCbiUdmyTtC3YKViqM9n0DcN/3u8wANCs9ycmlr 1ukLv7WdVRJ9BAqsZ7k5mOkJpwwVppFFm53abEYhg6R5H6hBNF VHkpvWDSyK2xz4ylr2qaDrCm7KickurwO5z03gnv4jfH84lW0c YQdXJWW11TVSeA LSSlF6TsJhy7HlnVioE4tiAAAFfg1DDweAFFE7IVzuuFBE i8tMqXopfYjcB6bFwON0eK6dZV4vHS8l9vHjJPdK0PyE6U9lJa f3s4t8e tce58vwi3Q1Q8njy1UhVLxdi1IN9YZ7WsEC7N6WDxKxR9HjK8T 20L7QS8VXpM0vW8WMeEAhKMIPFysnrcX4kS0ckPd7PzUvsO3v2 5h7Ku5caH5VgY0TFa3eksnKC/ahwTlW/pyCoPJ9B3zTKHk98W8B5m5CampqaemFg03tMEDPQxYU8eXicS6 2yzBc9XlqQ1VFqampq6s 81BWEw82J6U8CKzF5RN/jnSoeWJdvyuAPLmd95iDrmkB PF8J mFRSE5BEA7tM4ynFwCgFe7DBY8HQDRpWlIeSAkef29gf39fEAT B496xLi4uWrdch JAIbETmcft9C3TvWiRbL4rCILgWmoifWegY/HpwwefPfAt8m2xfZbs68dY8TPQS3G5XP4b 1bIt25J7yqbscr3eOR2UocuO N61CeOIUc96ElRon/jOiRxHG1zILB2Dt/jkbZaDDwR38PN15KkD2xIwOo1BwZXOIEUT9Zs8cgckeyBQJQO5 5KYJ783jS8uLi4urmwHpiyv /YLWRxv0vBM DNm78OHXfK2ZLmSf uq5VEJIUZeRH/scnmIc1UflQg8n0HfNHyPV9LDycaektRUiX TlnWSwCHKQ99SyPWIXYG9ZsQxOV98X1PPkj/v15aWXOTZZEqxJtCTrxL8uxyQpY2VmDy8Kbe4uB74yHp7ZZFIP EYd6Htu5OcEHpqAx1te2g6MT7LCyppBEkJdk5qamppWO eSn0SeJbvdhV5bIDnFPCTzIYjvGAAAFHTNJAEeD4CoIXahIvZZ nfSlsGtZ8gI77dSpNPqunu1R q1q2ukyyTtfanCRfHlMj46cyjZbA2fSjTLxstqzN2ckJptJXzT TQ0o8jyfpGhxuTpCrkUqD4l5uDkQi9KiH8OFLYOyCMywhzueUG nyex5N0nzzOFTM5BS3tt2rxTbg06RV8GjUSINttPDAIqHlU5dp rcX3YvSUTOcnqVLZpKTBeIl8QNuQPuchREGoQOe236rdimKjOp ZZHJeQYkalLF1DFRyVSz2cwN43 3gmqJi/wuGi2eJJvmYn880XXYBQH6OjBdKLUyKuP4lEx36nqSPocUhUgU dpYqaOMQhUTyt4JRGHwOFfMROmVLs8s3 UwpLpGksfygistfK6ZKsnlAu/CZHkoTU/Pek9kXoICkHwIfODxAIga4jBexD6ZFzsvvE9fxG9jeF8Acld0k XYb9qcrGdPMfn6 5mHeXtKpcs3VMjyDeCZ1U3b/RuwacLYJlCw GrBQYUQ9lMUNAsnFnAkpTqQkUorTfRa7yLzFV9PyR/23k/iNwHl0L9d/ 91tXzeKGkkO tso6epBzLJBDLvQxjESHs zZmbM6ZIUBNI9qD4q4cRI8qhwCijvUYnM8xnkTY9hfzyVT1QDF o87zkcjTnTnjvJwp4hKSg375J/N/gmXZBqrPYfiU8hIHWWi5/HYJSmtcto/kE mTqh1TSA07Onp4uMk/T0QTPbHCmIsIvQxAwDJh8AHHg AqCH2NJR6A0rfa8hOFQ/ 0Mrs9/ze9M5mdzhchwrDM6pdO4WxHU63SgwXb1ZqYMiJuimzfyNOc SH5Pde26HL4diy mc8hRP1kBawE99ry01EILqUh2J3n8VU/WTmLs0j l7JuZzuuD8BnW b/QEhOlGBBNZs8UTjoTDuJ7HmZJJEwONxzQHHE6k9KmHFSIwPf5q ZmKmSpI/M8xnkTY9lD3TxmWWYvMC3odonrZf0WLccDqfbo AKeY tenWU9XqbERMxftznUCwQ8eLxuJNEAu8YI1TXBEIj28Tdf79Dt 9Ph2LKONv4iC6Z78SHrNUrW6 1Dl8Nhty2bC3mBAQAoIfCBxwMgakTT44UzMqjatVOaWpo/uuc9yLPUxAiXbE6g/JDt11msP0vDEhjsiPTeERH1eKJNkJk87voSzO6z2OFU7AKntX6 QHxa4IHGqr0/tnqsNZJg0KcUunNbX54FOukqOBI4jikcEPJ5CyojpIi1aalkaV owC8VFaklQcsiPSQhXV5zPomx6Hx1NYhyjwi/K6m8Gj6vE0VEeSmIhDh0qlLeBl48Tjcd72Rb6ukQwdHtotI6aK i/yljQPXERf39Tg3ZwbqCv FhTQBiCgCH3g8AKKG2CYqdcpC83hB70 VdvpMdkWTeWRG oU8p2vH7TUQQZCGLPBHvmfg9FeYMeL4wRDREPUQvbM4FkTGO5C SsiENZr9LnNQrrkjCwrp7IC9PgffykiD4O/prz/8pmhTJSQHfotXiiaOwKgMx4oFE1oXt8fiddd7VVR6V8GIUxqPC IarP57F4PO4nqoF fhALaipw6l9nC vaBiaky3bwPB4/b1nFg/3 iibEbQqj5fH4rygiXteQKxQJguBdRWVxxMy3bmnyVW29 3wMNGnxiAAANQQ 8HgARA3xXWjwXxsE44iYnDJUNA1MLFq8M8M4zzana6d48YA/YHo8/qlBxCjMrZZDiHqo46Pi2IV0RpnC hLMfpeKzVcJvd/QiYMk/pt4e7iBYhjwKIGxHs0z57TnCDslw/Z4ivnCnAesUiTDi5G2R0WpVEXt Yyhx2ObvMCLkNAsXtrpvDrzyMyib YmO6F4Hk9DdcQqMsq1gKYyyb9hhD0ePxRRqGvS8nu5m34cujhb 8v3cwN2lweP rL5VIQBACYWnFx4PgOgh9j2D3PU3LI X9lu1wu5bHrfzs9PNvErie7yQox76HNhAcogmL2ChGF8SRaHfJ Zo8XyHzFzv/LX6nPskL9MS1fxwFjydEzONF fmMpceTfKIaqPACEyC175ng51S2SWF3vEOX3eEfVoLHYxCNuib Va7oHZsg9KKTZwtyS75ShwjRiYWxAIQiC0laFAAA1FJ5eeDwAo oi4hFmwX6KE7PGo TQet9OxZV1cnBkxtzVVZJ85naaha6etD8n8 CkiHo/9gZUqYUQ9jO8cA47Jd6o4tMeyUMr9rhC/svT7TO 0LX nWpxk5b pt MdCILmJQ5DmtlIHBhdjyeucCqZYxf5uZqsryCVosP8fjLaz6fy R5vR9niStYZ8FV4I2 L5IkJN8jt0Oew2y LixEBbW13h2X dStXwPV5wHk/bXM1AFBPb40VgredT/yqsM4/MUNsVkvvZ0KSdvljRNDBBbwYZwbWnAUgyBD7weABEE/GDrSD3eQ3R40nu51ofqTMwP5JQ7dopffwU6AexFzGMiMfTtubK 7702j9vpcGytmAvDjXo4PR yF6uyvgSz36Vh/QRlpJ/c b9 kiadPz2db8tD7KJqXKFEsiAqcVz4a64opAzT1qgWybBipOlRYZ Ti6D fzEfn Dwe/Ylq4OEI4oVCamqqdPlHz96SKY/95VaEPZ645orSs8GcyKBOnHi8sOsaNmmnL9aNcHd25HDqX4WSP SiVPloHAHAR MDjARBVpBsq8bYjYhGixwt8Ua8wOVTsyXDXZud3yAJdL/IGEfZ4WvZOoPcYDyvqYb3dDvRjd0euqa0vwe6aiWs38jZNUyZw 192Ra/5rSbtwkt/L/UkQ6uoySl9VSbac4yxCE7LH01IQiChpfx0SQow0PCri/mSSAhnt55N502P1eOSarfQ0Yc2Iyz8qlNOAn42Qx5OM2WpI4cT 0eCHXNb83jVtsdofTvc/1YnKPXNKzaN1yOFyH/PwXMzGkj68BSHoEPvB4AEQZ6Zwjz97cQ9Xvy9NO55lXAt/rBOfxxC4xb3CCmCvG60MK7g tzB2AA1Gh sUR9nga9kAXvbNv8CasqIc3gylgF3ZHR1SWEOR0zcRRC/6LgLTyt/vCocvhcDisPVQPNGDi1qan96Sp4g hv/e1uRnq1DlxXzBeECXpSw9iRmB/PGF3lLntt3hTsl uWiTDiVGoj0qMns/j9HiSkezl3gEbszioI96JN5WWmMsZIY8nMf6cjcUVbqpCvHi8U OsayXs33lRM8dMEv6UTs5EXTP6OGwAATQh84PEAiD4/Ny Jayx4nJsz5grWLK1T/yo0jlh2yG8bgvN44ktRz/ZoMXWPU4Y6arEHcrqOpA8pCB7nilm6Rlra6bKBwFwcj62XNBmR 9nipqRd6beKstoEyYq7WqWIxKK652rTwox7mVyri6J3b22HhOi he1 yfTUuBxHV HKmm3gScMhjnApOaWN1Pf fU4/Ew4yGOUHgJoUMlyRHP3pKJXEDvVLZk1pVn zWVipHweIJwuDlBJAyRKoGCQJ/Jv2PoMVJ VH6rntj0f2xEPipRfD75N42cxxNnxSrsny26CP/TEMKCmpLBTNdyK/U0pJ3OoxZjoWavhuzxCBPnshIpTFQ7rNRRJhSPF5gY75yupFIw dI8Xal2TVjvnP41 EFNTU9N q37rTzmJpRcfMbrApqampp7KNlv91wx SR4AQGoqPB4AsedU8QC1lp5/DYHFxcVFi83OWkD90L5AdTxVOy/XXksWKvC4P/vvIP0u3nN4yNzFV9xyyeXyEBewEKuoMV7/Rt7jUSMaHrdzy7pIB4UY5Asn6uGuRCAZExIEpf4Kv2tGrTFx6P KXDmpJA87Ld0mnWGBZuEB3kfO7Fsj1QgJJTJYOj3NJHsDwPZ7L 5fInjLcgSPeRY432atpmJNQYidm47cs0f7AsNsehwpkReT6DvW nEPJ440U/wODcti4uLi32sr4wJNxrangkSIyKJ6OIisVjH4aH/n5xh aA9XmpqWn7vurTeYdWAnNRRJBSPJ3kzc2i3Li4uLk488Zn3MDx eyHUN bSIZ5ELqJDvQ8hbBapx laupaYgR3oBAF4EPvB4ABwbab9Vj1gd3LXARTzuz7YZ5joDGjo vxKCh7MrOzYmHv/3s9wPkV0GSPkFlg/gql4C9MnZUPF5qatpvD7k7Kwke58cBaiQk9KiHv9qcOANKcX0J xa5Z2sXnK/wIeN 6s1I/NTWVNHmsmYBi91xtmRElfq5UWPefH8DwPd5yK9H3Jm7KXHhd61 aSIcVIssQlt9BxHpUIPJ9B3zRiHk ozV7/Rdx1l7oAzRp a83 ZXlod1iLj4VGBcNeosZxXrnYusSu/oTDjdHTBPHtgc6Y9dx/9BuWB4vNdS6RiFl/Gf1ymZU/1w5wn5y/Wlqn2kI5StkAEBqKjweAPFE2umLFaaRGe n6GLj6HY67DbLzIi5rvBfzNX2UlNTtXZc034rNU9Yt8TrH7ocW 9aZEaPfNoornEun/ZF9grTfqgcs/netHrfTbuNMMdUYrlB3gzhlqCAi4wsKZ9/cEKMegRXFRZOntL6EetfsVHbdABED74jvohgFDpKX/qwl88TvacKweN4rnc4zjiza7IH38B63025bZO5/7CMCHq85NTX1VLZpJjBmcOhybFn4qaLV44UUI3IbA JREQ5ddtviAGfNTO/twnw g75pxDxeamrqz5WS23JLu7YlKlU5lc3IF8uEWBEF3lwQyxaH6f ECt7YE8sjjdm5ZJ0zZpzS5K8UbBuPxUlPTLrbOSIfJ/CPw4Xo8XxxDqGvSTucZR2aCPOuUocI8YZHkpG/XkAl mwIA0ITABx4PAOAjxM4LAFEjGKcG4oeASw12zwQAAABBAI8HAF AHHg/EG/B4CYl/rmbwC2oCAAAIAng8AIA68Hgg3oDHS0ACKzCGtNoKAAAAzcDjAQ DUgccD8QY8XmKQdvqM9zPiU4a6wAobWA4fAACiDDweAEAdeDwQ b8DjJQbk1h2CIGA5fAAAOAbg8QAA6sDjgXgDHi9BaFoiltT37M 1hPXwAAIg68HgAAHXg8UC8AY XIPzeteJdF9 7uSd/Gw0AAACRAx4PAAAAAAAAAPQDPB4AAAAAAAAA6Ad4PAAAAAAAAA DQD/B4AAAAAAAAAKAf4PEAAAAAAAAAQD/A4wEAAAAAAACAfoDHAwAAAAAAAAD9AI8HAAAAAAAAAPoBHg8AA AAAAAAA9AM8HgAAAAAAAADoB3g8AAAAAAAAANAP8HgAAAAAAAA AoB/g8QAAAAAAAABAP8DjAQAAAAAAAIB gMcDAAAAAAAAAP0AjwcAAAAAAAAA gEeDwAAAAAAAAD0AzweAAAAAAAAAOgHeDwAAAAAAAAA0A/weAAAAAAAAACgH DxAAAAAAAAAEA/wOMBAAAAAAAAgH6AxwMAAAAAAAAA/RCux/vxxx9jHQUAAAAAAAAAAD7C9Xi//vprrKMAAAAAAAAAACA1NTX13// d7geLz8/P9axAAAAAAAAAACQmpqaWlRUFK7HGxgYiHUsAAAAAAAAAACkpq amtrW1hevxBEH43//931hHBAAAAAAAAACSnf/7v/9zOp0R8HgbGxtYeQUAAAAAAAAAYsj//M//jI6OKns3rR5PEITm5uZYxwgAAAAAAAAAkpT//M//rK vVzVuQXg8QRDa2tpSU1N/ OGHWMcOAAAAAAAAAJKFH374IS0tra2tTXmWZigeTxAEi8WCrRQ AAAAAAAAA4Nj497//bbFYNFq2oD2el56enpKSkp9 inWkQUAAAAAAAAAHfLjjz/ 9NNPFy9e7Onp0TJ8F67HAwAAAAAAAAAQh8DjAQAAAAAAAIB gMcDAAAAAAAAAP0AjwcAAAAAAAAA gEeDwAAAAAAAAD0AzweAAAAAAAAAOgHeDwAAAAAAAAA0A/weAAAAAAAAACgH DxAAAAAAAAAEA/wOMBAAAAAAAAgH6AxwMAAAAAAAAA/QCPBwAAAAAAAAD6AR4PAAAAAAAAAPQDPB4AAAAAAAAA6Ad4PAA AAAAAAADQD/B4AAAAAAAAAKAf4PEAAAAAAAAAQD/A4wEAAAAAAACAfoDHAwAAAAAAAAD9AI8HAAAAAAAAAPoBHg8AA AAAAAAA9AM8HgAAAAAAAADoB3g8AAAAAAAAANAP8HgAAAAAAAA AoB/g8QAAAAAAAABAP0TS4/3pT3/605/ tPNFgCAIgiAIgiAI0qW8rkcQBHtMOVaPt/1FgCAIgiAIgiAI0qXg8SAIgiAIgiAIgvSjZPR4W18ECIIgCIIg CIIgXSopPZ5TgCAIgiAIgiAI0qXg8SAIgiAIgiAIgvSjZPR4m0 4BgiAIgiAIgiBIl4LHgyAIgiAIgiAI0o S0eNtOAQIgiAIgiAIgiBdCh4PgiAIgiAIgiBIP0pGj2dzCBAEQ RAEQRAEQboUPB4EQRAEQRAEQZB lIweb31fgCAIgiAIgiAI0qXC93h//etf//rXv8LjQRAEQRAEQRAExV5hery/SkgYj/dpX4AgCIIgCIIgCNKlwvF4f5UBjwdBEARBEARBEBRLhezx5AYv HJt3rB7v474AQRAEQRAEQRCkS4Xm8XgGL2Sbd7we77OQ1Bptyc rISQ/oekuf0vG9xdKDM2qbYx5 ZiwqemMfJAiCoPgRVUmylfdHTtHFG/fKH/T1Wt0xDTDZ1qg0TNFMqOBbk YKaZKW3hvVHK OWml2ZD2Y5d1iaby7tMJ0fGkScuppkrQjMXvvurY xvp8093autFIhBlCxsWpHCP9nZW3yi9eyZNU0eUF9c9M444QLh iCx1M2eKHZvGP1eGufhaSWzOP1Kh3fWyR7wmMfBXksKnpjHyQI gqD4UbB9uMzCG61LlpgFmGxrVBqmaCZU8K2J3ONpjZfM4zGuvz 7/6G7puWNOk5BTT7NV8F BYRVkd3H0t93PuiRPWwgZpx8tjneXXs/jJ37upTsvX20Fd81gPZ4WgxeCzTtWj2f9LCS1WB6Pfzzt8YwxD z8zFhW9sQ8SBEFQ/CiUPlxB3pPZGAWY4YVik1DBtyZG0uNVjWqOl8zjkVd29LXdv3w pFmkScuppswqSjsRs1XXeT4L1s7BAdHyptIWQcTrR8nDLlUz1L DhX2NazFcRlg/J42g1esDbvWD3e6p6Q1HpDe7yXSsfLPF7Mw8 MRUVv7IMEQRAUP3oTQh8uJz2zrPpNTAJMeyHFhimaCRV8a0J7P CIBFePVTns8pYAdZ5qEnHoarYJ4BZlVIK5P/UqlLYSM04U2X9 6ojUX6FpCUdo9nrKRC9PmHavHW9kTklqyZqNH6Xja4z2OefiZs ajojX2QIAiC4kdqVf3S6se vs4S2eyg83dfLcUgwLQXUmyYoplQEW5NwohXcI11jBTdQDKsQu yjrA8h4 JGU63VZ6V5kXmzuG1q4pOwsud 93ao6mYB Rqu9vGm1iuH6fGCOiBePN4Hu5DUGpE92ErH9xZSHi/m4WfGoqI39kGCIAiKH2ms6jem7 bnEn2IrMbWGASYbGtUGqZoJlSEW5Mw4hVcYx0jRTeQs3dJq3B3 JNbx1Y2QcfGinQel0rTKvf7URhywMV6RIz0gv9Ss9eLheLzQjo m9x7PYhaTWSMtl8sHuVjqe9nhNrMNm3o3V19/Lzin645JYTM9nF10urrndPDG8wTilqUIWho8fnjU/upZXeN47KflSQcaN2rsd8zNaYlHRy43Cxw/Pmo35N4ouXPb1Y85eLrxc3HC3Y YtK2CkHIMvTDeLS3zxulRwufhR/cDagl2wUFUYEQDZTxtrxvo7l70LJV0quFz8qHHUwbhXX ft0vKM7HzfG53M/At5d24 6DOvuHkhbCLnCN0dCS67ux U0pm7sWvuaCm84c/KzPwLeXfKOJkIQVD8SntV39eUQdTzZffGAr8STcDlB7OWj9MHH h0AACAASURBVG/rK8q91enZy4XZFabWWVkFFUqtS3uhbrtg2VhrbWq4ds1XJZ67U nKtsuUxo/KUaGPX3NFys7hErEi9rUlOef49zrnM1uTjfGP9vWzf6na557PL 8 s7O QxtQsWlXqYFa AyLmalx/Mev9O1swMFdYbL0r/crWpnZ0g7id38yUnFpb3xa6YsUWZAX8fg7qsXP42l9GK2d3DA5 23S8v9xc bfd0KLanFLljsjpcdLWJzn5Fz7kpRdqnR3 Lz5B4e6L5beedyTsE5STfd3/8ZG/zIP/fjfEsT8ZgQZXV4V/G yDjdZNxAsfRLvMzaJlkl2V5bSDz 7VovHrLHC/OwmHq8XSGpJX wlY6XeTz6AFtbXfk55pPs19nsu7VDburKlMd7MdSey5mO/EexqXNNLRYVvazAOzof3bt4iR 2S6Vlz9cWeHFfe1tTXMA6MTez6tXorszIiedSP3U2VciuU9o1K bnXzKApP0dhPaW8y9UDwzZGIBl9i2Cyu/s WckuvCrNzWWG4Wxuo3GGzkQIguJXQVT1VD0vrUlIj9fwkh70y8 jJqB2XXCrkWpf2Qi G2vOymdVR3tW6N6OsiCxMdBWwT5HWpa/oc2WtyWjXo8vMKGQWFrQsyQOvWA/LPJ703Gekx7s/6/07WTMzVPiM6mEXlvcxc/Z1aZbksBzj81gWM6ZkVoF5Wbn8bS7diq29rSkpPMs8JfNmaZeN GYyFiZc383hNcO6Fkpa2BVbgFe4lLfCMm7qHn3PKGHHf9hesdh 8Zp6uMmx srGy4WVqekVOUcSWPmRFUhVD4TOvFQ/N4kToyNh5veVdIaskebLPS8bTHe0T86u66X6bynHh1pd5oIa78 SNooXi3LUvze9Gx S5dNMRYVvbKQ2x7dVnuGM3LSM/KyG6fn5RG3yeYvkc9wZl1X5XVeAMi6Lyv/vOwKOY9XA8e/eVZ/Qct6Sjfa6ESgkjGj9O5IcNltJiqO0iylKOekX6l9tBDr0gtBkE YFUdUzPB7zp/NZ bKaIb/UHDg4nFqXDENW4QWljlRuZtWrN9QVFnoLNa1bkJvVOKuUUFcKF SvkgtzHdOAV62Ha4xG5IPN43r b1T2eMPCoXPqXjNpxRs6aG8 zrh jYsYUbRUeMS8rl7/NDa4Vy6y6L2vF5ofaslV67czmb/ae8r3Em5bdHXJLz518Xv HlhMzcv6o6KXLOTIu6TLO/ahCGuCSyiGt54bg8bR4trj2eO93hKTWsOzBVjpe5vEULqWonKZ V6ZUflWs90SvD3ddzCrcu7yWDrdl8ZuSkZxQUPrNRp7fcZY7gS ZV7NpMXgFnC/jF0p ad7 C5oZYsDQbPlwjlvSNkBpHJWFo5HFx2q/YkKJ0tau PeQGGIEiLtFf1vU0XOBWUrAmQKauxxXdkmLWu2o1kVyjq2JGcv vOoXO4/VcPMSihVZZZVkTWtYj0s83jSW8s8nvfvWjze 3ftOdI/5hg7ZDnbQkzULK ejGkxY4tqLv19DNVM8be5wbZiF smiQCsvy7RtqQh1fxNPJWuk1Fwra7v aLD yBMzEw9uH2TeBZumCTnTko/rzqbW1/38v3EuvB R3hv3ezparlGhCf/Zqc7xvUDMi62GbfQlSftJbKedJ6C9XgaPVuwxx rx1vaEZJawbZnhGofSi5FTvTPvVDW2bHoWNoRlnYcbwb7Sqk3J eW90mA8lHu8zJtFT6feWIWlHffE675bN6jx9/J7k/xYkBeXx/HcjUePBjendoSlHUf/y056cD zqmFBcvqkKVt uvd2R1hybrZ8bQ U 7KiACoebyi9kHekZfKb7V7E0GYejtWV1lKzoPNzWux8ZOxtHJY Lbuvt7yQ/PqCUckWXLs/1GtxewNQXUa9lc /2emOfRmGIEhVis qPXpSqquvtpkEg/ovaHYKJy/ 5p9u2BrXdaNDMVGScV7n54idcPUFzidMjyXyiu63k sC0s7wqzlfdujagNxZbKqZLSJuZm3O9veOrynN9 /S43sna98NStJQ8V6mIwXlQsyjxdMDu7cvyXNuOKKASpzX5dIJ2 pKkyt6xUxNdBxlVuGh0q MNo7Riol9CUc/3fPOSc9v61Y4/UplpbfkrO/2snrtgRMf35Ykfl5LJ50ytoZbBRfy7hTUPXvQNfXKImk3R9uki 50UtNFN6mxv0 UrRVdKH1Y297e98T5ByLikzThbI/H2KjenyaL99KA8nnaDF wpx rxFreFpNbr8Dye9FKrm90v vuP7xeUHg t6ntE3kj6t1wUfuA5FeZxyu988pNnP6J7nlcrJvkxqK8V3Ku21 hJvNA1lPcOU4mgePEusu44m9/ynIzaVPeji1TKEAGQe7zczNvdnctkBLeFmc77xDTOrNqH81R uZ9Tr8ZzjO3cZCytfK2W3ddbuiS/dtGVbH5Bm428gu1hOTGkefaWeSzmZRiCIFUpPvuL2 7x6dWOZy351 hpS0RNuy23XgXX7g/1rVK3C7fWld/obJGpm6x4Z15RjZe0xnOPT081tz4rL7tzKSs/7wlVj 3UlxAVXckLfkJl5BgqX02RgR9uqyHq6szah5KwKdbDtMcjcsFE e7xgclAYI0YkqPQUFl8QEzXznuwcRzFTEx1Hurkk xj0r4w2TtaKFZf1Ek2trJ1tfCL Ol52VZqtd2omlIqctPkjMj2r5v403b5rTLHLdW nNJ6IjEu6jLM9pGa/X6e7o8oKag/06HGsHm9hW0hqhefxGkO 0fWWLsmvjaTHO1/5alp2hWnqCS9q7 ddvLxXPPFT7w1ikaKq nlW8CbIwbqrTW2 n1ari6Rhyy/udMtO32m4RY9SSn6dvUN5PDLufrkby6UXyc17YmOlpOXeDenVC st6eclYeud1cLlAV7I3TL2qCZXV2BzzMgxBkKpCq qz6pveS69DW6/z5b2j8nuFW vKb1Rc3i /AlVn5uQ0rWpMDarFuWHiJ1RmdcN7 RWoWj2/5AXv4lQ9zPB44q8yj6eUg/J25NOrYnJJlWeSX5ulE23YkYpBMaPjSCcs1cegfmW0cXQrVtJF l89PLwsyOLd41XJJWrYZ/RDy7UBmfRMzeTNy0jPzs0qN97qmBpflHQZS1JhzRs65nDtF97t b32y jUYGIeMSNeNsxrvkxNHMsjuv1AJJKhk93vyWkNQaCs/jqV3/3fuPL3r679Xeu5JFzszJa mUHEa1uAWtbtbVyNYxs/4RLxblveJZL8nxw5KuN ygLtzNl4ah7O6I9 vb2ZxbirRmydV6bwAbM3eySNil9O0ygrA C3pi6iMqroldpK eFAmvVrWgwVOMpbeGVLLbjIXOhuISvZS/TQrAFR0AgkFQVAcK4SqPrPsziBVFVPWK/9mF te4da6shtlNTazrkBVvBdqxhUTwfH67ZTR2FJUVHyenGx5w8RP qML2ftbVWmuI5cvznuwEflKsh8l4kTXwPOXxGmaVcpA6d0uY33 I/JoZPi8v7Az8R7cvZ8t538VHM6DjS7QvVx6B ZbRxGlqxgcJM9i2o4iQLm/z6kgD0G npPH6dyyrJKTPe65x6vcJMtJ2GUs6aH5n5FwrulTR0Px3bjVZ IeMSIuM rt2nRvAyCwtNtmCvk4web25LSGrJmo3nSsf3Uu9RHrAOm5gce/jQmF9UQuwWQom80QOyUbw9xLz77O08zt1lHk88S9Zq8mJHhiH/Zhcryrz0ofo00gDQwS689VJD2ipkBBmj83dfB5GMitn9nKxkC0 xaEoqXWRAExZOC7MOdy7tfP KQXYdqAqrqllj3CrfWld2IVx92EfMPyYpXmNsS5j7udnR23q66 d VqgcKmPkRdp9CaSNTXdIcXR8UaUjFeyummpbEmE0S8AtFC5Rc/dx9TMVPpUcjFb UZvzJaH6oVy3qwoP0W1LlaJCk57vYHKhtHpWfmZ5Wbmt/JEn ut1Blk4 cczl3SlrmJ6KUa8i4eM64j9P3qI27MstuddtCuFQyerzZTSGpN USMcafntTxXOl7m8cgDxoe7i/LzNa2lRt5I3iiy7i57wnmxKO8Vz2ojWs1LDbO82D2gxhLbWFHm pY9CAOhg82Kn7UayGEnvpZ6MitlNe7w2LQnFiw4EQfEk6tlndk eyijKullwtM9b0fBhnX0elCfAp3FpXdqMQKt61NWPDvQzVtdTl dZ1SZa4pjoo1pGK8lNNNU2M9WZbDOOZptWTUMet 09pxFTOVHoVc/Fae8Suj9dHQinFvEYpVIK8/2N p3gXKvHnzuY0O1drSo1r14moobm PUt4h4 Iz49amK8kVB89m19SNukPL5WT0eDObQlJL9mB3KB1PN/D3Jb9ODrZcplaYzMy/UHCvsPZZfedU30ulG90n3 YWdzLvTj/h93mxKO8Vz5K1mrzYkWEoLO1hRZmXPoP8ANDBrqpd0pC2ChlBx uhC9TgnCqW3h4LL7g6yorz6aFVDQrHuAkFQvCm4qp4nspq62tT CPCzcWld2I15oe gJFP6fbPfL6Q1vzmWVXC17eNvY3zK8WSfzltyEIipzUcPNVbw4 KtaQivFSTjdtOdhaWyy7 3ipZKKmtMmIv2LGb UZvzJanw6ZVdB i46QrII8FpNLM00PjfmyKcGiMqtqZ5nRd3T3dN uupeVxdvIOyejenwSGZckGbc2fZtcmMpQbGpbCT2Xk9HjTW8IS a1X9IPdrnS8zOOJP03ekr4 zCwrff5hVPON7pcRD8PVR6usuw8Q3/FfbmziXbysVzyrh/4y5DU7arMVRPVxp2qSdVMiyqJek 09EQD6yuwrTG8QzXB6RlXtIjsX2mVOjJOMpRWvZKdTqUHmAnXl 85WvWQFYID eDiQUBEFxrOCqep5oi8K SLi1ruxGGTX1VsYVJp7WSKusSw2z3r /fkKsMGko7Xy25JaeSLU4BW38hMptMbECb6ov4V1BsR5WTECZxw slB8dMV6iLENlRfKs3nouZcnNJ/cpo49plVkH7LXoeEfNv85 6gwk5U47B4bHGh8b8oiJqNuDlBwvK504sfWx73llRde8y9c1LZ n0jMi4ZMs46XXFdeoW8K7VvBsKLVzJ6vHcbQlJL9mA/Uzq N58o7rUNgZ/IRv1C9Th9rsxdSG/UQLa46cWd/fK7U1cobO/hxaKsVzzL2ptPrvBWM6MhHXKMT30/rVYVSsOWX9Thlp2 U0t9eisNgKxiapDffUN4t FuKCPW1cxttrEOo65WfKuXm4z5bfTpVFVI5cIz6mXY1UdGqywA i1250mMuNzbFvAxDEKSq4Kp6nsgmgHeRcGtd2Y3YFa/74R1iTbzrT73H7NQQWyNU1SxSJ1IHkFUlFaqM8soxeeAtlQXSY 0rKB8RfG2QeT2sCyjxeSDlIhi2vpUY6UZNI5DgsZsrNJcMqUFe gWjF5I6h0C9VuTBjqb64ipgISnQRFWcdLc1RijYzTXcbZGsqkM xEK8pqXxsOOSzJ6vCmbkNQalD3YSsfLPF7gp1ZyIZA7r8aIE6n ySt I9ngZBfmtNuLWq4uVhYSPulQ/y41FWa/kXNqAGcp6 6h4rVLvS3IyaiYDvz6rJ/fHu97Stkqc3tdaS 6oSwVAVjFxkvcV e45Pau2YZo6xt1WT P95SfjBnV40QuWN7czCHDSeYCFdP0jNzL9dNkPjoe3iH3xyvrH eNEB4KgOFJwVT1PMovCPizcWlfW1jDqw7F 6uuAO3cnvT9RVW555ajyiTn5rfyE0lLnX258JPmV9niDmhOQbE aJNi6YHHxllM4ryTsn VjoSqMlvouZcnMpswqD9BWoVozIWdVbrL4qvCz5KbPq3lu3tmC 7h94uNJue3bp9L tqwfmSLrq024SxDmLzp7MVA76fLJvdfUP36h9eLyz54/LNkm75HakXCmW3XyPjdJ5xz4idkOU9sRCVjB5vcl1Iaske7Dal 42mPVx/4iWyc0jMKrtYPdS0Lk uOvt6 0puF9Mes5I3qaY Xk55ZmFM/9HzBPbnuHhwZKi iPq4ovzPKj0VZrzTYo91NGeTFz Xdr ndfL0uTK47usydhXnkFOrLtfXzkouPmrLI0w1FLY0ju6PrwujC 8b6u3/Ip24TAZgtJyumel7yroyXUB7sUmnhk6m ZWFyXXg9NlZ1u5ScNpCf37ojvcKz 2VkSApym2YGV3zRLJDtbkzlQhvt8XLSM/Iyb3e3zDgm14XXM1M1FeT2LBn5he3u2JdhCIJUFVxVzxNtUXgX CbfWpduanPSMnLPX6qvMH16vC5Mru21tj7LIdQ7OlpoHfOdSVW 7O2Wv1NQO Gvtx0/1M2QIJ a38hPLV caGgd3RdWFy cPjxhqqzs omZTGnWzOSssHNSegzOMRqbry8jqRYjXVY47JdUff0FjLKJn 8 Zc9gdFZLsZj8VMubl0194iGqDrxg v14XXMwuPey3eY9pkViGYW7iN94qJFMuqLG3ztqHC6ML7x43Vh ksFF/Lv3ah5dt 80L3gb/5eGsnSnvvHzZbGIW9pFyaXN1vajFeziLy4ZvS23Ts11CSgS6WF T6b8V3YPjoxVUc3u1SYjMk7fGTfans37IJAlVlqxlYweb/yTkNQaaMkkH xWpeN7iTYmo7Yu8NN4e7bmEim/UZ3c4ykq4974iEIsynrJYO80yL6/56vg lMbebq7sVL76fIAzJaRFVMdP4X7TfX0kCBfhrLeHuoKPVSFFVw utNYF9 Hy2ZtddAAgCIpPBVfV80Q2AUoXCbPWpdoaVZXe6nMHTm szA/m3JzrT/kJparLNbXviLiTzVlp2YDmBHxKeLzMulkyTQYKOD0/IvyfhPFP7roy1pLuhe1d8V7MVJrLhnLOUvX NpdqxWQpo3aLdy/zLrMTmdECFrZ3 E601d4Kpshl1TfM e440hdUecu91DAbTHoi4xIu49wPbodRfSkqGT3e2CchqSV7sJ8 qHU97vFrxJ/cDZSOUWXilQPqipabmg3jlWtLjGbJl437S5/N6S8sHxViU9dIh/7BUVaKlw1Fw9eH0sDziH6bLrivsglJwve4RPwB0xVSrlMLuZ8Z qLTbPUNROJ8InYeyT5U6h4m4tmWWXpIEhs/spWcmezy5U2jQmq7b2XaxLLwRBGhVcVc8TbVGULhJWrUvc6HxW geKy5nlZDeQV3qi8CD9XcPuS5IDMumleQhmyVNq1/Kc2KuK1Mo nNQFlHo 88s69Enb1LjtSGG4nJpilZ SkZ TmNu/EfTFTaS77mqvZJcF/o6cyqxDsLbqf1jPm5qi2gO9eFcpnyrDLzM3CdmmZcbc8rNT4bp fT7iPjdJRxc7xBeK5YacVWMnq8Nx FpFY//WC3KB1Pe7wa6a8flu6WcrxZVuWtTtubDun2rPkFz9yBc2vKqCJ ra6xm70ppKDI9XlKLRVkvK/COxw/uXeBvY3I2 6tThs37lNvbhYwV8UtyG6cHlIKwOwtsmKq4d3Cr4Ee07Wr3BV4 0zMLr9a9ecEN56sbvAorq7Kix0EkNZndLWQlm1k3bXpMz0rypd W1xrpxt3IsIAiKIwVX1fNEWxS1i4Rc6xI3yqx7 7iOs09xZmHu46Uh2RVedBqz2PfNzSh/afqwevuG5I8FpmechLr ZK26nNOuXSq/yQo82ZyV3urXnIAyj0ddeai35RKrQr5YOy0Lxusb1LBGZnXVbP wXM7Xm8sP0Leb71tyW5o/CG1krdv1p8Lf4KLzobLmquLf1udxHjBZw6W1FsdLraX6Bd3e2P ZJPISaVl3n7pekDMk7nGTf0tFbTFtMqacVWMnq84TUhqSV7sJ8 oHd bR5St2mr6AIfpmSm/sOS8r9Dnnc 9U/hozLQoDK8Jw5bePEn7dPZmV5f/xGpirnZOXoswvCb0DXYXBi51qeBiYUP5sw99WmJxq5cbhcUPjc 0t YUlf/iXtT17ufBiYUPp05kei2pyOVqMxpz8wnOZvhMv32qpGXQMrwnD 7Y3S/scfVeOSs2ZL85QTjX0vU1d3acWdi9n fTkz8//IvZNf19c861Y517L26NGjK7kFviBdKriQf mPxeIpCaz wnt8WaH14TB8eHyW W 5MrM/yP/3k2jlrSCICieFFxVzxPZBGi8SCi1LnEjb13UN9gnrRLPZZVcud v5aJxbHw7OzlRV37vsP95XY/ftDq4Jw3R1V1z0wn8dMqHyWoThNXeHufPmzfILvs2vcs9ll fV9bUssu9LNmelpf2aE7CF9niMSEkr5Iycc1lFl28a7/TY5Ec2VRNfKJ291TuYAMVMQ3NpWbt/vzaQrf4G7m0XI1t9fYmgb7EmDFt2m5 25BeWXBB3PMs7f7XkSoVYhJjqezN2p7rmSm7RH LS bnnsosu33yo0s2w7DY/bblxs/zC1QKxO3Gp4ELundzqzsY3DmRcMmTcw6pCaTpoESut2EpGjzdk FaCY657M48U8SMGJaptrZ2MfpOBlrC3VQSwgCIKgR4THy883uW MeJAiCYqhk9HiDqwIUc1WRHi/3SeyDFNDj2rJzV0qyShuK7vfUdq apt3yYxrJNZ3iKvzBxJTweBdrZ2MeJAiCIChoTXRdlc7qvHy/9n2sgwRBUEyVjB5vYEWAYi65x4t5kAJ6aawhR8bzsx9Mtc/5fjVPLjQ01BjIbZrKRmIf7BDUJPN4MQ8SBEEQpEHuzmnHwIows OJoN3fn5RBfJZ2rePUy9iGEICiWSkaP1/dBgGKuu6WEx7vWHPsgiZoyXw1mmaPfb5o7Yh7mkPSohvR4NbMx DxIEQRCkQbM3c3mtUunNlzEPHgRBMVYyeryXFgGKuSplHi/mQZLI/aCm7HeNHu9SdcVYzAMcohplHi/mQYIgCII0aKe8mN0qnb/9 kXsgwdBUIwV8HhvYsdxe7zuZQGKue6QHi/HGPsgkXLU1981qI3mnb1aW9bvjnVQQ9cDmceLeZAgCIIgLaKaU Z/Bu9F fz72YYMgKOZKRo9nfi9AMddtmceLeZDkej45U1VvvHqj5I8r ZJhvbzz2SWXS4y32j 0xzqEYep NeHxMqpnYx4kCIIgSIsaGyoNgWXfLxVk3Ggoap5P9FYJgqBIKR k9Xtd7AYIgCIIgCIIgSJdKRo/3fEmAIAiCIAiCIAjSpZLR47UvChAEQRAEQRAEQbpUMno804IAQ RAEQRAEQRCkSyWjx2ubFyAIgiAIgiAIgnSpZPR4T cECIIgCIIgCIIgXSoZPd6TWQGCIAiCIAiCIEiXSkaPZ5wRIAiC IAiCIAiCdKlk9HiPpwUIgiAIgiAIgiBdKhk93qN3AgRBEARBEA RBkC6VjB6v8Z0AQRAEQRAEQRCkSyWjx0tJN lMeo0XBEEQFBCqeugYhGKWoELGQZTg8fQgvcYLgiAICghVPXQM QjFLUCHjIErweHqQXuMFQRAEBYSqHjoGoZglqJBxECV4PD1Ir/GCIAiCAkJVDx2DUMwSVMg4iBI8nh6k13hBEARBAaGqh45BKGYJ KmQcRAkeTw/Sa7wgCIKggFDVQ8cgFLMEFTIOogSPpwfpNV4QBEFQQKjqoWMQi lmCChkHUYLH04P0Gi8IgiAoIFT10DEIxSxBhYyDKMHj6UF6jRc EQRAUEKp66BiEYpagQsZBlODx9CC9xguCIAgKCFU9dAxCMUtQI eMgSvB4epBe4wVBEAQFhKoeOgahmCWokHEQJXg8PUiv8YIgCII CQlUPHYNQzBJUyDiIEjyeHhSReP08/VWaVpvTb1RP fuESzxhbSncAEy5PN5LHewWG hfT5bOta86t10e3zFHnv0vrvfLtqJbsU9/hgz9F4Y339sPnL7gfvvqcr2fX71Q1CE7eGk2yGI82x3r2CWEuv eIVAu7fOpLHT 02ixLi7EOhkzVtk3d5FoU4qLXJgyKK6GYJaiQcRAleDw9KDYeL 29l ShyPZiyNav/avb5SerX77vtn6X3EjkYehz79CfV8UPr5icPpwgeHbzr6z9BHA PFx3B43F0omimZ/PAE59pAo nKL02YVBcCcUsQYWMgyjB4 lBMfB4hrGevW9E4obVgzFXrgVckau9jPp1dvyAl6WOh1djn/4Sdfz30L5TpRh6ZrtfSk6Bx4uO4PHkMvTnTjvE1yVxmCbweIrS axMGxZVQzBJUyDiIEjyeHnTMHu9E0cwQZfDC7ME0bopFYGPlz9 SvVFdJimsrM9aJT6SMaUfN4AmCIAjunQJxMmpkPR5xtaR2g/B4iZgm8HiK0msTBsWVUMwSVMg4iBI8nh50jB6v86eB3W3mRMTQ ezDm 7aAY/y2NGimD3hhJ274efNidkdKuinFYP6PG YTId40GpocJB2ec8t2o7QzJb3ju9rVJTfx0/JQIJrBeTzP3sa5iwphgMfzK/79DNJELng8Rem1CYPiSihmCSpkHEQJHk8POg6PZzD/YrbN7bO/ihOEMHowZR8/BS5ytH9fPvcy/jum6aaUdNOJjl1pCnr2bGckK8f8uXuPSF/5cCVbHWemXaLFde9V5ikfD4/nV4IUG6QJIXg8Rem1CYPiSihmCSpkHEQJHk8POgaPR/0qCILH7SH FGoP5vy85GM7wvm86fmsnJ9fe6plFzSYfzHbprbde26/HfV49uz7g8NTf MOf5E3WltKMfTfmndue6/g8Wxvb9dXdapFpKNyTTp/1TPZQS6haVieF46cXw727PtTq/Y3Y1NaPN733XuSoUHPuEm LCelSHk8WZqkm1Iujtye3lv/4vFm2IHbbV0mVwr1HuBb 9S7lKjlJ6VRx47vapd6Vp3bXw6/im8PjpxfDtY3tnvMIyfDySxFP3OizmYj31c415a l93uRNGkcX5/Xbqa675zanqJGynipl97qk0nH6zO2b2x /bV5ZqbmPlB4vxPVs21z vE9EXDtwHe/b9N9NLv2SrZrdWVa4JivgfJdKWzHabThQtpgveHgAAIABJREFU DG67vcvDHrjd1mVr/xYxT1syIk1K u5G0PxSQ6Mvujhye9pu3ff4644j5xfOurXFa1bpBXc//p19a lsAoH1VXDwhQEeD0pMoZglqJBxECV4PD3o2D3etx3r8n/XRaQHMzUk2X/BOjYg SlYj9fxQ9f2xoHsQ8EARweWiQkNtmFVsgCMH/UeKhERQfhcI9v IWjlLUv9r31xSsPE1Ch5vOUfurbZc3Q9rq66jpR004m6tRU36w C3s7WO5VUMQw/XD3jrj3o52N8upsctNWeWgsfLW5olg0oNuqakm1LSX2ZLlyehY 1 2zfEyA7S4/X20U5SXAnW0H9r2c1dS8jL0YFlbCwis5FD9HjDdEIJgvBhw0Gk OOfR K8x6cRl1hxsptR9Ucd/93Gmi3tTbPod6dXVzVtKuinl6oclaU7RVjCkwgCPByWmUMwSVM g4iBI8nh50nB7v4Mt T2v/ifQI9WAeb0l67JRnC8rjdZyZcqn0mAVBEL59tsqHa8gbHXjoIU vafLJEDRd8tv0cbra rJHuwEAs06Kg6Hg8t0dpLRm3vfKJ3MxIcG5lyhwUw5ux8Oyt/6wQMIXM4nk82ZKwTINXaVXxn4LwzTYtM2DETT1f5SXyYKcg3ZS Sbi63aoq bBXWEBWax/vKSANna9ncJBEv5tq2A63bkkOO9io1vvJQqVU0PebUkOyJ7j1p NJhfGv95yCG9Ajk4GWphgMeDElMoZgkqZBxECR5PDzoOjzf1ZX d722gcFMfBItGDIW7q6/4GFITHI c0KiPvjaneyNlarBYXwqwKwqflE mdPw1sB6aTHbjd1tWPN0pV53z69OcXdukszdlubcMgUfJ44UIP 49BfJyrhGTeFlFlMj2cYa90iu usTxz/PubU5sBks2epm8r4aplNSScXkhW 7VhXL5X7Vg86mTtyY9pJFOaD3eKwx4RD83gMttf K91UYJEmD2uMjnzl8XVlTutopGKtonXdWuGbdeyVeKKBNKXOzf P0fc0PNyQHkF8Fh14Y4PGgxBSKWYIKGQdRgsfTg45jzRW5ItCD IbtW22v/xTxMdaGIq0uz5Lt9j tzu3HoO4PJ 8XX4Cb1Gv5g6LG0N6ZmG3gBUwjkp42uXebAlmeFPV UErFEp2d7jfkRkfwjSXW0DjAy0sS5ZbtRbj7B2zxD PZ5/eMlzjqiHuui5OLkII9w9Gl 7h/ tVL/YfxInUsWRc2ZxSg2ssFD/0RTxeL0bcdqSc/tTEk3ncwdr7e6iUtQk/pUPJ7Pr56eks7rlU/r7chc/Or84nq/bDO mPpnrtb3AupSfZTUPJ5vjJTwqILH9oGarklO1JR9m6ogpVqFzn qxQGYPKRtj4qPfwHRZMcdXliU/E440nMIAjwclplDMElTIOIgSPJ4elLAej9jc3DfEIZdax/TvE8SXcOypd2TnnuyVym3Dtx2rJbgVL8hAeo74nwUyp3WR vPgviS43C7ysXq8zxtEqlLjloLg2ViRTpCjJr8Jn5alUT6R3Zf bLl9/rN13/OVPFF LlkwNGcWXWyWiRVKBUE4cvWwPhSk7u60zJKZRc6hFQ4GG/k3FQTB7ex5Nki5ejLjvg48iJyLC6aUavJ4R 53A6Pf0Q8UuU0IvRwu6eGD2sRSoVYhi5zsxUfHmVnim2FidJE0 pVRVo BIwyoM8HhQYgrFLEGFjIMowePpQYnq8cgJXdw7qnRMqU4/NUbnl0HhIyK5nwn azq1SXokyitkkh1o7kqAx rx6OUTDcvzZIxoI0oVj6CSVCnHNWcWdRH6k0Led24dNcRykKwl OkizYZsa5hcD9iRb0lQIgnC0t23v6Y/okF3QCcvKNf5TSb5YIQ0V Vzb5yeDCCG/VjlDLP/CevFBDseRQ8ev2nclvxGjfAqONLzCAI8HJaZQzBJUyDiIEjyeH pSoHo 8AncRduWOKdmxUxg0KLdKx9a vXsR Im2DeorrKgGUhAEwbMyPfe3i6aU9I7vai3vHOTIHt 5kfvsKS1IeIweT75NBbV1u2zhjeA93sncgfRnqz2rzl1qcVRFj 8fNLGXXfeRsLWMGg1ofda ScQwZd2nwqJvSn5gGCi25iqMEz8Hh sZ2T//UPyK3cQI3eOoej/8lKrk1gnRgnBz7Ym1woiBurULO62ZfliwbZJGj1vmc7e5gRoR0 pOEVBng8KDGFYpagQsZBlODx9KBE9Xgv7NJ5TtwFQpQ7ppqDQU VQ4g3kI4HBJ6DMUWzOkhMyyY0Q L1ncql37QsS hSlNVfkoaU8nqz7q8njdXxXO2ec3n5vP1Ba10LJ4/EzS3X5k7Ul1qL/VLw0II0adVP lhvfd9u5a/H7ONrTtDFjGKVU1eMpTbPkrZxJmjH uwy2uI9zCIsAkWWS9NUBU0oOSFIjdeEVBng8KDGFYpagQsZBlO Dx9KBE9Xhkj/OYPZ4kgqpjVhpk2iHH1BgWjhxI5MQ35AUJfYqSx5OPYITp8Tp aLW9/6Liclh5qjmz1GfPMqf1RtTjKT4UJyoWBjcO1HYC8KxEaIs8TcE LZvSV/GrUPzJGjqt/mngVXAij5/HSOyrXpG9PvN8QknM4aUcKjwclo1DMElTIOIgSPJ4eBI nJRhUBCVTQ6nuI3O/LzVVrtuIUDKmdVEBYMaXO6NMqxLD4zH2uvB4trc/v5leLTeO/GVA /d4/MxiebyDLwfE8hqMBUsj6fE L06pJ/XFwUv9tjcbLv5IJucT0xAUrMfjj0OmpMtGxtaWTtATNYN/lKLo8ahZ0MLykJl6pSKbLg6PByWjUMwSVMg4iBI8nh6UqB6PHP sK0eNp/R6PfItP7Lqm6me0aPHdkcpFNHg86qOjENxmIng86ms0976x1kw MVQWx5go/s2Qez7NnO2N4 XCDKAayNVGItV4Fx8aZoNKNvKn6Q0QW0e9ujN8Ytr3Z PqVHOAklw8JQ8F6PJWHuqN4RWJMj/YqDUQBlu poC5uAKj9NuQbTmgR8X2dx/bh/0kdKb06aNiFAR4PSkyhmCWokHEQJXg8PShRPV5E1lzRuK4mtc8 V0Z LiMej7BnjO7HMRWkIpIu GVYmpV27rXsy0crATwetR69PN/pfRci4vECe52Ty gLzq1Mwi2EZ7PD8niiTjzeIgIZwkKvWtIkXI9Hrw80O7S6LPmv wnJBXPEDQD4 IX00S22Ud RY3hL/x5oXHV5hgMeDElMoZgkqZBxECR5PD0pUj0euvx/q3gnUBsfh748XmsejnQm1X1yKYWqImJ7I6i SA5uaZvrRSgCPR5U0 pMtw1jPnvZ1NTV7PMkKjWRh GYdIwJAbbdof/9Ow5717JvyirRvBdHlz9b9w68OymSaUtLpxR6FvfXTIeajxjTh 5Jr6Q02OjHmOxJQldyHXKn4AqJmWno3VH0K4PpWwkusxd6EMqz DA40GJKRSzBBUyDqIEj6cHJarHozqIvAlpqh3TvJVlam6by9Hz bOg7gyklveO72qXBzQPyWydqoY7IeDzZFnyCc8t2o7QzJd10sn SuZ0vBZPp0eoroUM73hfAVVuJ5PHGXbYP5H8bVt/uyhVgi7PFMKWVrVulNDvYqpX6bLk7fdqyrl0q961t2/qVhaWzv6KvLbf243TM8l36z5yT/puyHSLZxwsH bn1Dn2 fcYP5H8ZVaqcNwu2H89zVbZATHjcvZnekGMz/0TD576shXpx6wxIg OWC1AJAvyURnFubt32zfDu K59qt3kO3AfrG/bBicVLd/tk 7Z7Rc359MOb4x1OYYDHgxJTKGYJKmQcRAkeTw9KWI9HbjHMm5q oYa3Cn6dcCmvvk3yzTVMLFUbI46Wbvh9yaArGkaunjuHfyIU33 b11MSxU0fwej16DVI2Ie7z0jgILkVH2xSlJkeg4M6s9gOR29pr G8YK6viAcubqq Qkb1HNHrwwUwP/WI4SLy7ZN9ydLSAVPMQDf933WnHD08GxA5HKgPvgbtYdRGODxo MQUilmCChkHUYLH04MS1uORy0jyNozWtB79y xFLTbv245l7nv63Ih5vJT0l8UWt1owPEtDQ6whDmqEIaTlPSOm qK6r ap1m5yNSaeQa006XZNY6yIiHk82PkNtiW4Y69rVsq D7H2Bxu/xDGOtWxpfSsj2TgjruZscpNcz9eEb8g3l4uT2A16cm dDK3gqAXhZaT3QknDOtSXZYx5IfPKrV0GQbYtHZ1aIhQEeD0pM oZglqJBxECV4PD0ocT0eeRFXVyXrGK17jnX80LW9ccA3Dx732z 6muYqgxzOlpHeem3Bwt7f2uN909XPmsEU2GGEqyvvj5b0b5PSb PQ57TUUHuYeEtAseIY8nK/D0luiGoZoVt9LmdUcHlokJ uss7WuuGPpvLSteX CU2PCeO8auFYIgBCYGh3RxMrMEQWlYTE3qAXiZPc1/vgRBEI62lxcUP9UjlwMVNGzUHlphgMeDElMoZgkqZBxECR5PD0 pgj0d22dlLawazr3SKwfzLs4 DG649t78b6PHs2fcHh6f dlFTGCJirk4UTRrn99e/eHz9wiPP/r7zjVIYTPRC7fr2eN6cGth8bz/07RNw5Nm37/WYR32fUZGnS ZSRszjyb6fZKzIerJ0yji/v/7lMLCZgefgUKk4Bbmu5ons0dvT2 /tB2JxFYQD98H29mfuLcJ 7k5WWd5su/3b8X376nJbV223KkL3eLIvDPkb06tKWwBOZI/enrZb9w/ETQU9nr1959T00i/ZGr5ifbwlLUTcFX3DLAzweFBiCsUsQYWMgyjB40VLxCpwkVr6X DEXY16YQpN05TrvNsoxDxIExb38XjcSziFcUR5PdVgMClUJXdW Ho2Db05NVSz2rzm3/qxPPweH2tr392aD6sqiG/gvDkndPwpHzi v9vEXTuwO9KHbFrOPMtPSbC6UXnb4sdnn8xx85v7itq7bbVZ0h B4DcoIULZzGzju9qiVIneDzb2/Ye80gQi/EmasbFm4jJGiFvYqQDweNFR9QScPB4CpKuZs77JA CIKn8H5XZpoZjHZgOqmNEb4YBRU6JXdWHrODa05fZ8y5eV/1gdzM7j3vuiYqVBRdntv/RwQL7O2odKlbF7ESdzUbMCOB4PEP/LaXv3lVna/NE7YfJheHxDGOt9PLdIt4PEHSccfEmaoNZeDwBHi iondjg8dTlPSNS6jL8UFQMunvY95ZigeDjbEIwEWzd0rtieyhG 9NO8ms8xfVLoPCU4FV9aAqqPaUGghiwNlA1paSbUvKWZt3KPQj PbPfLWKfGcSg2xUy Myrb48nKAwulVZe4IjZzUoD2eIyQy3DvVfJfLiR2xsWbZA8yPJ 4AjxcxXRwx2mQVEDyesho3A0UgxG21IChJdHEwYKu floOvh8TCVHfOkqgl66BIqqEr qDVZDt6QnTDmfhWAJyrxSv1Bb79XLkeBj9nnrMFYtixjTnDI/35 49bZuZeGa7NX1nK6p4zarpyrTH879xUwvQ9lq0J7EnXf0g08mq 1SXZmxp4PAEeLxLq KHVZmHO9IDHU5FZfDN3tH8/lnsGQFBcK/Bh0sGu7ZzSEj7RFLlmiQi1BQUUaSV Va9dIbSn1DYe32yLc3 7aEpJ7/zbsy0buVfKk2LiXOJ7P0EQ3PvGWvOJdNOJ7FHKZDqXp2OdMlHX 8Rcz2SxNL3KPR 0w9O3z mp6bmdKuulE9mi9lZzAydtxlyfNG7eSHo/ckOboYGF49DuDd1Ex 06kFqOK14yLIxn6czlLLsPjCfB44anzb8bVN7v8jZvg8VRVtmb 1P5z4ngeC HrTs3vwfnompA9OIiTmvudH7vGOpJjJFkPpoapXV6jtqfTTbkH wbKxIR7mpwRaylaG20yCX2DXMjktHBg52i2P46B2LjruYcec6y j3e4jtpJ54uCS NW9IayV4eTDBOT0lnan6u0ZjL5Asv0k50ZL8nvgzlLNaSsBkXJ 7o4eGl4 yPvS1p4PHi8cCWfueT2EDNG4PHU1XFm1v8SLeQNlCEIOg7Nvwn sCyJ8 pyvZ9fvVCURAsPxkq6qOrVFGp7Su7T G22myyQ1OqvxCAPuW N7Prn56U/6/ j8eMtZgqfUKrs2bM9O0ZdjdwCKrj9h8qtEpOgvc92613txObU6 v76lwOnh97jl9qSCh4vGqpco8uNkxzQhccT4PHCEtkmObds2Xn k7mHweBAEQVB4SoqqPtT2lOijC87WYuqA4S7phaWDPJXrNskvX y2z9MVf2KV9xjhYzDa6Os5iRs7S9HxV2SSWGMeLqMcjdl71WBc jEbuXDzekZRJzNaMi0uN5VqbffR/kRrU6FjxeJOQvT56Dr28HvHuhwONBEARBkVRSVPUhtqdEH53Zv yf7gpIhF9UeITk5OUIGIH51fMWMnKW5Obvcq5KJ5vs2hdE28oP M4L7HI0cIVz/1fHTtH3jvdeT84pqbXvopiO fO74rnzKS3wdSk4cTO PiSf7n tvXvd167 6I8Hh weNFQt27Tvtej3n0O3ECNzweBEEQFEklRVUfYntKzrd0bJyRHU Nu5Hgw9Nj3d3KSpzDfJ5t1fHVlWXrExoq F489tmL285RklqZzK9OgbtTJpVMV1lzxjJuCmT1et0Es5sLE43 7T1a 7jfrUp69LYWNGRMu4 JKlSue9Y 227VmMWvg8fyCx4uS4PEgCIKgSCpZq3ot7an6MbyPozR8NHWsD XrMdUzFrHpdMkvTu86NusdLSe84M ZU2yHjm216LKhNmE70sZcKlqFhj0Tqg9Ijz0aIe7LHa8bFv Dx/ILHi5Lg8SAIgqBIKlmreni8Y9WxFLM3XZJZmv4dC7V4PFNKuul kleXtPmuZfEEQ3M6eVg2jbaTIMV5Fjlxdip/VketzCoIgHHxxvvHNOtZBxiWC4PH8gseLkuDxIAiCoEgqWat6e Lxj1TEUM2KWpnunwDfMpc3j8XdCEwRBEL593rTlBrfMr/nhBnGFnfWPN8rNJ9JNKRd70gd2t8l1Pz22DwqTdc/MyjbhFgRBEJy2lf O8mhestYPMsHj QWPFyXB40EQBEGRVLJW9fB4x6qoFzNilqb0wzkNHo 7mR7JkaunTrvNM/ 71/bGt/ BZ2WMnud5om6D3BHU8fAq92rfl478R3ZHSrrpZOnc4C7hRP3Dl QmbcYkieDy/4PGiJHg8CIIgKJJK1qoeHu9YFeViRszSdFoXJWNiqh7PXG4lxt Scto XSr1rrgzdmCa/03Pby/lOLEhRA32a90g0zI5LR/WOnE/oLT0SKOMSR/B4fsHjRUnweBAEQVAklaxVvZb2lNg5jbmuZoFFag/EdTWpD6gY62oWr1mlR2BdzTBEztKkbJiaxyv7 IkoCRtniNmPHWdmCbv aeJVxIId6m7m1InLQ YEzbhEEjyeX/B4URI8HgRBEBRJJWtVj/3xjlXRLGZUNmnEt3s4tcsFwy9Rbjy4LfKUFLLHO06/kaz1QyzTPM4FjxclweNBEARBkVSyVvWa2lPSwjlb6Ulxw13Sjt RvTzwE2nhvlpm6Yu/sEtHAG1Tw7FOkOgqbj1etGbV3prrWbZPfXRufznYcx99XpySH0 OtpOK/tfnfnR8HV 1z2 69L4dfjz7XyFdVgcc7fsHj QWPFyXB40EQBEGRVLJW9ZraU3LK5bfZbnLKpWFpVjqZk5hvSc7 zlF2ftBbiJE 9KlE8nnVsgL4 NY6nsev1eOuzylnU93iBQeCBVmK/c89kBz3Rl9qVAXM1j0PweH7B40VJ8HgQBEFQJJWsVb229rRxU9 qV8GysfC/59fshh3QsjvxSy3zfJl2q0bsft/9Xw9SQdIbgwW7xsexnHUPFrcf785CD LPa93ietSVN61ga5iYJI aZ7yM2Oj/xeIvopTo3z/t/omynZ3vt79Ir5y3PE1f2RSQBMy6hBI/nFzxelASPB0EQBEVSyVrVa2xPX7XvSo/7Zluc 9tFU0p659 ebdmkI3VH /fJFRdPdOwSXXX3vrHWfCLddCJ71GgjFnK0z0/GOjWirtgVM7WPKoutK S2eAe7m/6N7AbpdTWFb0uD0kEzhVLUQa7HIwhH7ncDo98ZTCkG8y/0/njflockDpBaBkb49nl99ZfsjpT0ju9qLe8cxDYP1HsHHWVcnAk ezy94vCgJHg CIAiKpJK1qtfanv75hZ3s5bNhbVNGLOjP5cjxMC/mqRF1xa/Hk5sxBehRPsVSRA 4cfHsrZPFr4OajckvPK6uaA7ixTTj4kzweH7B40VJ8HgQBEFQJ JWsVb329tRcsOxWNgGePdsZ5mTLauuKW/FMwTPb/TKMWCSM4tjjmVIMY13kxuKcvHJ10Xugq5Si7zt2dtQu7HHZK UmX0uQjg7eRb/wJGv9IBM8nl/weFESPB4EQRAUSSVrVR9Ue/oym56zJ3Kwu5nNH4g7UbFMTa4TOTpYGBrS9HFX4iuuPV66KcXQ f2vZrTB2drC/W1Mh2 RQQyn6/onN4uIN5377vGnjFh7DUM0KN0gel6PnyXG8HUjW kEmeDy/4PGiJHg8CIIgKJJK1qo 6Pb0ZOmUcdm57fJ4x/Q8B4fb2/Ye88hJ1XsZzL YbXP2A6dvNPDI cX1fn71QpHcM hW8e7x0k0p6aYTRZN103br/uFX/xDagftgfWOz/Rkvl7WVIkP/heHN92IB8F3W Khf1eGfrFrqWRVLneDx7Nn3B4cnfziuRXqStX6QCR7PL3g8PUi v8UpJN53IHq2f31//4vG/ITtyfnFbP24 rIviAsRBiVpWK8Frk44z0y7JTCelJtbfFgaaWG9nyPJLdhJ1hm LZlsTu1nFW5juKV/x9KmpRO91Jx1U9FD9CMUtQIeMgSvB4epBe43Wibv0T59OKqG4y E5TirL8bZoLbiNXn B7vRMXKAm9OSzJNaoLHi4syLy6aTy55pzvptaqH4kooZgkqZBx ECR5PD9JpvKjdRaXE0S60cdffDVmGsR56ZTmOx8tbmsXiBF7B4 8VFmZcsmn wV3k12reLmXRa1UPxJRSzBBUyDqIEj6cH6TRe5Ox5AsfDuOnGx V9/NzRRszS9MD3eq9btyCwyXrkmOX5tKdYpEJLg8eKjzP95cD9Qen W8g5lOq3oovoRilqBCxkGU4PH0IH3Gq3LdJs28g8 NpZ0p6aaU9M6/3OxR/3T uBSH/d0QJJul6YXh8bRvFuxcnla KTxegt46Hsv81Q9LgQIs2 FaN9JnVQ/FmVDMElTIOIgSPJ4epM94Vds2pZkX5bVJQ1Y89neDFWOWphfGF rSB9S0EQRCEg6HHkhVWDLPj0jmcB7vFiuuJweMl6K3jssx3VK6 JZfjTxKtYhycq0mdVD8WZUMwSVMg4iBI8nh6ks3gRXX8Ws93ys zr/Zlwd3HDtBZYtPvLs7zunppf4yzySyzSvLaUY m/NO7fdR4IgCB7P9vZ2fVWnamgj1N/t/OnZRyL8giAIR84vB sb2z3m0e iuPgyc5amF7nHmx2X7gEkM97n56U/e8ZNmjM6fI9n6L/Qb5vadu 5JSOSR579L27rx02jcZA59ktlH6toUXOGyTRhGa0TRTPtq87dg 2 TNx3Tk0v/XRRQ/iHN9/bD/Z9Jwqeg8M9 /7g8NTfmOdq8XgG8y9m29S2myhXHs/eF9f7Zdtt5eJt6L8wvG3d9y1p6zk4XP/oO0VjmT9RNGmc31 XPZLKSeFfEl1cu9yXFPvOufnVS6XcMEunawrOzfOReTriSzqr6 qH4FIpZggoZB1GCx9ODdBavYD3eyQcf339hTDT0c7S9vMDaoIb yeKuVazKns7HyZ7XQhu/xThQtvNlXCL8gCILH5Witi8qeBOQsTc9XYhtXmccjJ9B tczSF3xhlyaibWpYa0aH5/FOPvjI37vWx8H drHsE8FIe7yxM2OOz8zM9LgG dvgfv9kk7eELPdcNY ntPapj6Pt5bnv2aVijZOeR5/m32Wrl/mX2dOcdBAEweN 28dcebXz3AT/LLUwp1xdWZbcQ/n9QoJKZ1U9FJ9CMUtQIeMgSvB4epDO4hWUx/u 267WKRQEQTjYXT9D2zzS4x14vsrOso4NqIY2XI93dfGdyhqVft x7lWqrmAQtcpbm5uxyr/IWtKpjR QMW491UWtGh PxqtdZHxMy8OzZqGIQWY/31XVAeGSKI/d4B8Pmfd 951QN pGrhzL5ynmhvvapl2 2KZk5ZH cKZ7idBN VFYMXlZaDxQcq 02OUzft5ijeerH5uSropJX24S5IkjBcQiS dVfVQfArFLEGFjIMowePpQTqLl3aPp9YZJXCuLZGv/0mPxzqjtVg9tGF6PGJy45H73fDUP3yTSzv/cneuZ4vo9H5dmYvsvnNEr9q5lWmg0oT2eP81RpiR T7Z0CIxlqIyEBohj2e b5OMOLmdg bxv3hnAxrM/9FgeecgxqOoL7Ui6/HUcdvLqeVANBtUwb1TYODemix4ZsagNI DnQJpeAxTQ qOk4Aq838fc2q7t2fcJCk/0kVTBMG5tXm7wbe00onsvvQB w6RSq72MkZhKLBI7uzayozowxIP0llVD8WnUMwSVMg4iBI8nh6 kz3ipr7kiM2ke1xt///5k6ZRxxU0OqlD7I6t5vO21/9IQzvA8HjHyIHxapi2cYWros2fPvv9merXcOPIX1W 6gkthqbvwrp6i4vGCdkSBXKNyUxNfe6q1RGTxnaT3vz07Rh Qt7LkPtze/jw4sXyjoe 7aI7jCYIgCJ6Ved9XoCdzx vpQvj/2zu72CjOc4/v3V5YR4gLX1mVFaGKCxRxYS6Qo17ABUdRJKtEUdIewUVERRNVH ClIUaStihW1nKOtTpAOByqUNlCJhDQEqVYpNbFwwCHYcQgkTh0 MLmCMHceG2PgTr52191zszrsz73zvzo7nffn99L8Bez37zvPMM/MS7zxmAAAgAElEQVSf90symVaDWijk56ffL3qb1ouvy8ZmdfTL z9wObUm8o9 OWv7oYs/53mLDm7O9B/vmrCbOcp4ts9oKhUJhdXZ8rDgLrjnbe9hpBKbl0L /c9PS4NWp0XuZty6UzsaotQfw0dgvxActo3yXLp SA/F879zC4tLo2MOPrtzKHL7o LLjud55018P9I5GLelZ6lHCRJopKgKHJOHxdJCe7fLzeLZF/O1DGW2riVhWYrB7vNWp0Xvua7Q4qzqPZ/0Osw9/E62L8zx0p2mU5vTt/maHc6KEx7McMffdPae5l0HDV7XHWx3t 9xqPzreuGkdBWzO5LfHvjP/yJbDz/fOu5oir368jmcPf3X4yljP2MLkUt76aqO9KXPxzAPzR81T16Qf 2Xu/HUaWmg9tdVmFhXs3rWfjk3ct8w6Xez50bE5 sPtKJV3W7VOmc736zcc1vYLWQHqWepQwkWaKisAhSXg8HaRnu3 w8nmWpdFsfndBnHz0y/5Xl3r KH9k8XkXbM1Tn8brPTVq/Q355dGTiVORddvavbR6lWR4EqKLHsy71WSjkl3N3B8fsXXZBwl etx3NczrH1zk1L31e5f0ka qQPK1DN5d/mJycLXbk/sz8AqKKvROk4dCmVls6RQuFhTaHKaDSNWU dMe7Fs/qNKLyr9 bU6y8Ko/FnhUKhdXczFxPn2uXnbOsaea95I K0rPUo4SJNFNUBA5JwuPpID3b5ePx nsXzT eP Oy6/Gv i2/Z3rskz1ekBVW7KpyPp5taJxgNbe4eHdo4lRbb/QbJ1hGaZqnRano8aQNG8ysLMwt3BocO2zM7PINX7Vrrjiv8yF1 jpVfNFjmj4VdCjK0x7uw8w9fHb460T 5lLOOtyy32rpuamFm/FdOf oN63IupkNLV6V97w3b SzPw/y6x20eYD4/OTnb03erOObTU5Y/7jBwV3HpWepRwkSaKSoChyTh8XSQnu3y8XguXsIu16dwyc Yu/hCyMvjeRob48E6wCKE eXRoXv G6wFlWWU5sLobdOyKDXzeE6KbF3N1i87H/ltPrGcu9U3YB/GWYv98eyyernyUaz9aUE9bYhDt158/fxI19Dc OO8x4Kf5VZLGesSFGlApunQ0rkKgClDmk Ne20gUSgUCqu5mZmPznkM43QzkJpIz1KPEibSTFEROCQJj6eD9 GxXbTye6bFP8jMhn7ANVe3x2psyHb 88NBzi79CoVAoLC1EskWedZSmtMyjj8eTOkUd1tWUVvuIY13No j759dVHD5Z9tsjLz09JW TF4/HcjlJDj9d65a0bczPBFrgM6/HcD12Vx2vKtDcd qrtfi7ncymsTt1z2SIPj4dQ1SLNFBWBQ5LweDpIz3bVxuPN3u4 3fiT5GdfRnt6KwuOVtO1Y/6kbk3en3btcFr7/XbXjNn13jHDEsB/J3B vrI5n37v10eDs6ELezd3kH9w324N4PN7vbi87HqVmHu8T 94Jy0tLo2OTXVdvH/xz1/tu8/GCebzmTy05FKXHK6r14uvnx3rGFh65mna3 bd4PISqFWmmqAgckoTH00F6tiui XjSQ7xp0p1Pn1VARejxymq9 LO/3Gq7MXl3RvIq1S8VWJ3Hs7bIYfqZZQV8n0UvauDxTPpt17622x 8Nzo7KHaSLnSdcw cQFGnHP 81V y7X2TabSuRlL2c2xhOs/44ml94vHh3aKLt4/595gVI3D2eNMlzYWJEWi3Wdc0VqRt2/sEbTufWfT6edf0bl4 H0ra3vjj48VjP2ILcJ k8V9Di8bxfMagoPUs9SphIM0VF4JAkPJ4O0rNd0ayrKU 6K6/VHoPHi0AdUhdQ1X /Oo8nrbto64Sxng2fKY619XhlfXLmgaU7yGyl/MMnr/fo6fGWHx21d7S23vraEsPZd43fkSa2mTqZhaR3GaZT6urxpCVe 7K8/5A0STCdEWqTUcatxj3U1fQ9dhQ7dH7K4df8FXaK GNdeepZ6lDCRZoqKwCFJeDwdpGe7/PbHk1ekrHZ/vDXxeKWlDq NLUwu5qdKm9RZ9Is t3VBK1OVHk/as7u4c7rxx1v7e81LIzoaHpOi8XitF3/25/4/9j3sf7A447AXXHtTpuPofXMWWPpCpfBJIzmbWq 0PZCGC/rsgW7bUM6WhJPf7hY/lfbHW5k/Y83h5y7NWL7f8tT/uhzalHhSiGWf1nxqYsJtXU351YnT/nifzlpNryXnpXSdvvuN24qmkpqzn 5ru/3R4PTd6eWFZfk8NGVsVnll o/2v2MtGg7zRRWXnqUeJUykmaIicEgSHk8H6dkuP48nO4pCoZBf mf3V8Wd5bYd62 7vyRtnHbz0kXTX1h7j2fbOGFl8v49sSFYc7b34NXpKcvjuKVnL MBcsrDyPye2refn2t672Jxpb85eb5uwtGZ68Gvvw0Xi8eSNE1a W7924tc9YZH/bW1 9M7hgTRNr55J1cGmhsDpx 9bLv21vynQ8 96dnu/t0/p8PF6hsDo1OnLw2IWmTHtz9vo7Q4vW77d6p8echJJnLhSWFrrO 9z7b2t7UenHv YfSOpOWUxrU4xXy89Pvl2LUe/Dqo0lbm8yZ09w ZT1dq7PjY0Zzeg/fWLBvcGDJebm3rXw2mjIXdv7lzpczK7nF4szAW5k/iD0t5I0T8ovzXefFLpEXdv7FFgvH5Xwsna5Ll09Vf0UkS3qWep QwkWaKisAhSXg8HaRnu3w9Xqb9uY n3bbUsmPrkVh7j9fU uXlML1q Znx/e6HjsfjSVsvuGLrkqqVDg25bo/nhHWviPam3w/f8VvQ1Iqvx/Nk9sEbUt mZa9CT6RFUN3n40nT/HyxZo48tNUXa853vHEz5/ ZEuW9Ge3dg94f/Obji/ZksOwpvzJzIvKNJddaepZ6lDCRZoqKwCFJeDwdpGe7Ani8pkzH L3vngti8he /lZ tk DxMu3Np769v1QIhG3vhDXyeO1NJ0f9vnP 5iXH6ZE10fMdU1PBbJJ974SmTIefI8pPzJhNpIfHyy8sebqj/GKn0 4Xz1 a8c/hleVvpFPqsa7m29 Oep6Q5UePzcZS3iv80J2bnvHNzyyar03btg3 2xUWCoVCYXXixpemwcmfHL23FMybuu6dYAmleUysLtKz1KOEiT RTVAQOScLj6SA92xXI47U3Zdq3nR7z2lxuZfnejW cnggT4fGaMu3NR/51bc7nmXh57tG7f5LtwZp5vEx785 Gvpl38TMry//q7XXfpbom2nZ67N6id /T6uzDiaxj12Lrl ccxmQW27L0VeeVNyzn2cPj5bpO93W52Jv84uwZWwSFnv bPCzTwtJC199sntlz2wb3P7g6NTr0y9buc5Om/3s09gvpjx 65ZaT fmpo4f8ljZp7X1XHiltZWX5Xl fbarehd/0zc96Xwqul3N7U Zqp mU6LfgSpOupR4lTKSZoiJwSBIeTwfp2a7AHq8p096UufBy272u kYXJRWOzgZX83NxC/4070qrxJiXF4zVl2ouzv7qG5sYfLy UH81XFh4vjY49bGvrcVy4Yg09XlOmvan14usXJ25Niy 8svB48e7gyJtH1mqhiwsvt430jC1MPv6hvIn2Sn7u8eLdoYl33 rvoaTsv/OfFiVvTxgetybM/uMc7WfpT/ZNLc6W93VYW5hauXf36P3zHDbZeefPqw7vTy8YHC/nlH2am53rcPuu3NV9z9vr7g3PjxhWRX/5hfKx8HmwroNqjZj0n fzM9EzXleKXCbR85bZj/W2Dc OmcBgt6n/5t 7n4bc9B68 vDW5NLNY3jik MFrXpeztMuFeQVdfaRnqUcJE2mmqAgckoTH00G6tgsFkmGGo/B4CCkr84IrlhV09RGlHsUg0kxRETgkCY ng3RtFwqi5kvF3aEtW3sj9KTJPBnvu77P1vz71EKUehSDSDNFR eCQJDyeDtK1XSiAPjs3uVooaNtxgVAwmTaLX5n7IMK915MkSj2 KQaSZoiJwSBIeTwfp2i7krW3HbnWVFgvJD34a3zqWCCVN5m0bf TdmVFeUehSDSDNFReCQJDyeDtK1XchTHUfvFw3eync37EsUIvT kyLSVvL6deE2UehSLSDNFReCQJDyeDtK1XchHJye ezzXde5KzBsVIJQsvT32XanGr45 qedMvKIo9SgGkWaKisAhSXg8HaRruxBCyFcHBo2t GYfvOG7R4XKotSjGESaKSoChyTh8XSQru1CCCEkRKlHMYg0U1Q EDknC4 kgXduFEEJIiFKPYhBppqgIHJKEx9NBurYLIYSQEKUexSDSTFER OCQJj6eDdG0XQgghIUo9ikGkmaIicEgSHk8H6douhBBCQpR6FI NIM0VF4JAkPJ4O0rVdCCGEhCj1KAaRZoqKwCFJeDwdpGu7EEII CVHqUQwizRQVgUOS8Hg6SNd2IYQQEqLUoxhEmikqAock4fF0kK 7tQgghJESpRzGINFNUBA5JwuPpIF3bhRBCSIhSj2IQaaaoCByS hMfTQbq2CyGEkBClHsUg0kxRETgkCY ng3RtF0IIISFKPYpBpJmiInBIEh5PB naLoQQQkKUehSDSDNFReCQJDyeDtK1XQghhIQo9SgGkWaKisAh SXg8HaRruxBCCAlR6lEMIs0UFYFDkvB4OkjXdiGEEBKi1KMYRJ opKgKHJD2JHg8AAAAAAEBv8HgAAAAAAAD68GR5vAj/YELQtV0AACCg1EMMkGaKQuBAAo nA7q2CwAABJR6iAHSTFEIHEjg8XRA13YBAICAUg8xQJopCoEDC TyeDujaLgAAEFDqIQZIM0UhcCCBx9MBXdsFAAACSj3EAGmmKAQ OJPB4OqBruwAAQECphxggzRSFwIEEHk8HdG0XAAAIKPUQA6SZo hA4kMDj6YCu7QIAAAGlHmKANFMUAgcSeDwd0LVdAAAgoNRDDJB mikLgQAKPpwO6tgsAAASUeogB0kxRCBxI4PF0QNd2AQCAgFIPM UCaKQqBAwk8ng7o2i4AABBQ6iEGSDNFIXAggcfTAV3bBQAAAko 9xABppigEDiTweDqga7sAAEBAqYcYIM0UhcCBBB5PB3RtFwAAC Cj1EAOkmaIQOJDA4 mAru0CAAABpR5igDRTFAIHEng8HdC1XQAAIKDUQwyQZopC4EAC j6cDurYLAAAElHqIAdJMUQgcSODxdEDXdgEAgIBSDzFAmikKgQ MJPF60zA cze7a2lhfVzxUel3D1pYDxz8fydXyoFzYTxjzQ92ns6 1bG1sWJdOiUxr3Npy4GjnP6d8ci038vnx/ds3iY/W1W/avjd7dmA wi8Y/Bj92c2pVCqV2pztr aA422761Op1O62cB9r250qE Qr3D 2LdTvl76X5 8Wa4ZxrurqN23f71cx5ocuHNm7fVOpzBSrzAeRRhCSCaU KBVcVmCQlDQLVNelu01dfePWXRXe0Cq5OSaqGCclcJVTCoHpdF YaTPkP92W3pFOe2WQ7tg5FA48XHeMd 5 uSzmS3rivY7xWx9XhwoZg5EYuZX/6lEuWlXKt4bnsJZeylOs79lxD2vlz9TuO9UVRzMIdIwqPJ4p3d R4vwHcwW7wAvz5 5qX13r bGzy5s94xilsyl50rRq7v2A7Hj0QWQUguxUiv9bdIOhVcVmAmE WkWqK6Pd zb6Hy3CVsOK7k5Jq4YJyJwlTN ObPFMQT1O08OVnU6c30HN5f lnM25UbO7HEOf7rhpSoPvqaIlMDjVUe5HqXqt 4/2nl9eHh4 Hrn0f0/MfKmfl9nrfJE8QsbgjF/Ldss7F3dU9v3H/2wmGfDwwPdfz96oKX8iqF d5v9UcboVEql0htfzJ7uHhgeHh7oPp3dZXwuve3YnSq/Y9hjVO3xLCelOo XeuaId/MtFs/3K4 fbEl7/ 7UuT31omYc7x4YHh7oPt1qPGiktxyyf jOsW3GK anXymWmetnsy8ajzn1e85NhTkBoBiUen8quKzAytqnWbC63n/I9NR1vHug ND1inGzcbwNOlPJzTGBxXjtA1cFIprpjS9mz16Xg1nF6cz1ZDa IG7dTNuU699nCH9XB1xiREni8qhBXu72qjF9 vfQCYUPrF7U4tuIXNgTC9BKhrrnVpaMuN/IP462m7VFGVLH0lqz0hjE3eLyl2OGU3vl NaUs/DGq8Xi5kUtZ61vUSj3e vXFr Zt8koWL51OB/jK5fu/2 K 45cM avHSyG2hYN1zJTzo6aFRlIApR6Pyq4rEBmTdMscF2fen9nROWw kptjIouxwvXBeCcqhyA3cqZkvys9nWUD55ZNxmOILfwa3FhFSu DxqsFIkfWvdjg8e c6Xi0WiR9lempwcKUvbAhG RWX7SYkIQYIWm9JubbdaQ8fc fIM8UsajlZ fNPBceo0OPND13IOgysqdTjbd63b5vHFy9SsnjPvPqq/1cuhWv95s0/cvtd42SlW07a3zV/0brB4ft07S/d6zI9thQQRabKmY2QaCj1PlRwWYGNtUqzcHX93B73201Pplh5N x3s8z9sJTfHZBZjdeuD8STgdD4NM /8fO2D0a2/efNmt2wyksXp2OKHWw7dDH3sJCBSAo9XBcYYrvX7Op1/wXiWDPsMGhB1L2wIhHhh6fjkIuN4S rcV7zrbDt23/FDUUyMq AYlR3W FQqlUrVPb3/H2 /VNn1JTxetvOYn8krndVnjnT4fWXj3V/97rbLrr8rHiucTbXTeSmdXrduiHN70qm6 sbG1z7ybzgoCqXemwouK7CzRmkWrq6PvbPD/ce5MyHuCRXcuBJajJWtD8Ypdu4HEW9udreFNHmlMbjpLdm M25P4WPn/ vn2zc11jc4Pr LPr4958IdOiGIlMDjVcFX//OTxsaGdWnXOwceD6pAzAMLOF5g6uTOdT/evjd74spd479m2/Y2NjbW17mmoPvTz/xQ9/EDLeXFYlOpuvpGpwWnKjmG b/mBz4Qi1p5L09W pRYXqbS66vs8fqNc x2mxcW747Pc6Ixubt d9u4x1n1eztoPHaUn1WNT1TT0wqKQ6n3JvxlBQ6srccLWteNHz sFUwytcnvvbqKCG1dSi7Gq9WHqZIunkTJuzyGHwpUGNRUHP1X4 lEA/Hh7PHyNLgtSbSlD1woZACItXw7fPRo2VPI7HWrGpVCrdsCfwnH aXY4i75 tZx1Wt6ppbHRbC6/ /n27fbzKAEXi8grfJK1s8774AYzZQaY626 /6vma eWiL9aZmnD26IJ5kKPWehL swIk1SrOQdV0Mb9l8UJ5EZ8zAqmh0n 04thtXYouxqvWh7 Am7xNqjMsNY6pLM/yMpQkqeUrIjRxvYT4eHs8HMUEqknrjhKoXNgTCKG 1ekVgXljYMlaxPAmw4bnWE6U1PAe6/25aLTZ4Tjsfwzw6x7w8mWlJqwCrfUbh8TxNnsnieXk849FCrKH r rv g8bkNhl3wd1tBXkjn7r6TZZHI9AWSr0n4S8rcCIhaeYXrPKKGP U7shduT UKhcL8g sf7NnotgJeBTjduBJbjBMSuND4XpbhR1mX1sQpPz6Eu/TnH1w/K1ZV9V0FIcGIlMDj1Yjymry1e ej6oUNQRA2qFaDBcp3yvW728pvycTEcac7ZfnFRTDj6XIMs8ez LU8m1tPyXQgvEo/nYfLMFs/9bmNc6qaZ2xF6vPK/x9ucN/Jx7vMEnaDUe4LHi4aEpFmAYOUGz7zStM5eDr22iQ2D840rscU4 IYELTdQezwibeQGDwJe dUuluqdfUfr9qUgJPF4tKBeImr4IUPXChiAIG1Sbx5LySwjJZA 2ceGFTY8O6tMsyJGEellyPUW6c45JWYos5t1lyFXwXp8 VbhzGYjXy0SwWz 1u4 DwauLxNmzYkEql0g0/Ke3Cad3ESeH3jRAASr0neLxoSEia QcrN3LpyC4nj1f3VBS9aW43rsQW44QELjTRejwnhxf80rdug5t Kpeqe mkk7wvWBpESeLzIyfUdag6/F2clqHphQxD8PJ51uKMVv3JWfgsZ oZkTDL1fVjyPIbfAibG/BrvYfgReTxh8qxHs1o8569s9GtKM0Nq4PFSqVR6y8Fr1qcXU59 n9fvYQ3Kh1HuCx4uGhKSZT7BMT1hilP/w9c4T5f3uw00Yl/C4cSW2GCckcKGJ0uMZg2vXv3TGEvygl/5U33kjlUyzUmr8DF87RErg8aJFbLiaStXvOFbj1zmqXtgQBL xmpV6vPKtKJXeuK8jQAHLTY0OD3T//cOjB36 /cfGu1PPiul7DOPL 61o5r3NUVQez9Hklf5PdO453G3E5G7Zw9bE4zl/RvR5Jm4dAIgOSr0neLxoSEiaeQZLbHaf3pKRh0VWbbN8blyJLc YJCVxoovN4YtUzmyer7NIvP8kH2rgqeYiUwONFR27kjBijXb/z5GDNO3lVvbAhCKIvy2UtuKm 8x9KHP75j3zK2fy1bLMYUmK7RZp/ceBs9jXLzgkS7hUzyDFKpdu1coslzTwLc2Qez8HkyRbPfrcxJn c79ITWwuO5jVsVefLSGVWHlYAflHpP8HjRkJA08wqW2AnRcZS/aTp5 AUR/W9ciS3GCQlcaKLyeGLVM4det4ov/S9aN3hHO9GIlMDjRYS5PgTrHakeVS9sCET4vRO8h3da3kF4dTI 77pxQV9 4teW17Ok3/92rYgY9RlCP570BaXQez2bybBbPdrfx6ke1YXxD4xnAtV22Dkx jKTf3RvquPw3KQ6n3JPxlBU4kJM286rpR7dwjaeyFGGqtsmA3r sQW44QELjTG6XKNlZEKPp7ZulyKN8FDY3w7JbdBFymBx4sC0yJ Ldc1ZaZh27VD1woZgGL4jcFXy8HimOQzphj1nPGYSi50TUnVP7 8qe6Lw PPzAlNEe99/gxwg8VtO75RF6PMnk2S1eNB5P3DbcXg3a9gPyfzOs mat4A l3pvQlxU4kZA086rrTrXbSvjl9gPfuBJbjBMSuNAYJ9Rtme6g 1rWxuPVeNm72iJSAo9XNeU1mFL1uz0fbKNG1QsbAiI2e5WnEbv gVpPK67w6TBWXMN6CuhzSdTWUMMcof1OXZzLRjbe7zet6itLjG bYuvfP9KSeLZ3t0yE2NDrvR9evSy ZfdxX/o ySS0 bLi1zeD4x/svtNhisyxOUhlLvQ jLChxISJoF6cdzf oP2Y8X6saV1GKckMCFxzBxzlemMTDX5zmgUJh/4HovHj7xQvHsvHCi O/RqdLfuvrfWxsbG9bVuf5xI5P8HGYiweNFhGmXhLhGaJZR9sKGo JS3Iw y/qWzxzMtBO2/DJAYIPrCB053O E6paIc6hjmb q4Q4PRp a3QV6kHk YvN1td4onwWpAwzwneu2Xbty2HGZyi UELHNJjLNh3WFQ/qnvZoKgMJR6H8JfVmAnIWnmOR9PzLfzmY8X7ME87I0rocU4IYG rAONW6RROYwmb6k6nazYZh3ZZVGWqbXeovYATBh4vEoyZnmu0w qq6FzYEpv dHWKhrz3uO//kRj4//oqYRWcqZ6WVQQLvkmBURId vPlrR4zvIo1zDHkM80BH20fKr03q93V6/7FoPZ4wedu22XvxIvN45SdOuddfrOQl33PEzcY2TiDEuQKVodT 7Ef6yAhsJSbNg62qmNrxqe6tetmyBumzD37gSWowTErhKEEZO6 kQtL3Hq4uaD4p5NIvz2AXi5wZM7Syu0bjmkZOe/SAk8XhWUH1Q37X1HXuPQzPm mrzVUfjChuDkBk ZEz3TKXXNbUcOPphcSOX4eHrnR eyL7WYtoNNt3wnGnjTnFHSv3bs296peiHV 6WPiF66tIbX8ye7h4obT5k7PGaTsurQ4c/hrh01q9fX/zKrae7B4aHB7pPiz2OUvV7zvldNRF7POsUO3kwalQez/wgYmzvZG640z2l/AlxroavnzWdK1U38YFgUOr9CX9ZgURC0sx3f7ysecp4sRx6b0M uKru5Ildy4yoksxgnJHAVYRoLZ5zP651HxQtrh cAMfsu0I3fcwUB50wqB7Ou VDsG9pHg0gJPF7lGNNr/anRNACVL2wIxfzAB6 YjJwj6XVNu45csryPElsQ FOugKYVhOQjNLx0fOAfxUHqYoh8Rccw1tU82G68LrMeKNjA56g 9ntnk2VZniM7jFQq5vmM7HJrtsdmEed03W1Bi2KcF1pRiqNf6W ySd8JcVWEhImvnX9fHLrc1uu/rU7zhim1Xn5PEqunEVCoUkFuOEBK5Sxjv2bXQ8n857kEXm8QrS 4KRkBDMaRErg8SpGzFzyB48HUTA/1H06u3f7JtOudel1DcU9DbqHHIZxGpOGA2CpgPMDZ7O7tjYYpr KuftP2vdmzxYGiRkefMSOhomOY904Yv3b8FeNYdfWbtu8//nnAlYsi93jlZwH7AnxRerxCQT7HQRqeG/n8 IGWUB8BPaDUByX8ZQWChKRZsLo P3A2u3f7JuNemF7XsGn73iMXnO6Djh6v0ptjkWQV44QErgpyI5 8f3y imV7XsHWX8cRhI0qPVygUCvNDF45YM2lrywHVq4ZICTyewujaL gAAEFDqIQZIM0UhcCCBx9MBXdsFAAACSj3EAGmmKAQOJPB4OqB ruwAAQECphxggzRSFwIEEHk8HdG0XAAAIKPUQA6SZohA4kMDj6 YCu7QIAAAGlHmKANFMUAgcSeDwd0LVdAAAgoNRDDJBmikLgQAK PpwO6tgsAAASUeogB0kxRCBxI4PF0QNd2AQCAgFIPMUCaKQqBA wk8ng7o2i4AABBQ6iEGSDNFIXAggcfTAV3bBQAAAko9xABppig EDiTweDqga7sAAEBAqYcYIM0UhcCBBB5PB3RtFwAACCj1EAOkm aIQOJDA4 mAru0CAAABpR5igDRTFAIHEng8HdC1XQAAIKDUQwyQZopC4EAC j6cDurYLAEggqVwAAAJKSURBVAAElHqIAdJMUQgcSODxdEDXdg EAgIBSDzFAmikKgQMJPJ4O6NouAAAQUOohBkgzRSFwIIHH0wFd 2wUAAAJKPcQAaaYoBA4k8Hg6oGu7AABAQKmHGCDNFIXAgQQeTw d0bRcAAAgo9RADpJmiEDiQwOPpgK7tAgAAAaUeYoA0UxQCBxJP oscDAAAAAADQGzweAAAAAACAPjxZHu90f0Ez6douhBBCQpR6FI NIM0VF4JAkPJ4O0rVdCCGEhCj1KAaRZoqKwCFJeDwdpGu7EEII CVHqUQwizRQVgUOS8Hg6SNd2IYQQEqLUoxhEmikqAock4fF0kK 7tQgghJESpRzGINFNUBA5JwuPpIF3bhRBCSIhSj2IQaaaoCByS hMfTQbq2CyGEkBClHsUg0kxRETgkCY ng3RtF0IIISFKPYpBpJmiInBIEh5PB naLoQQQkKUehSDSDNFReCQJDyeDtK1XQghhIQo9SgGkWaKisAh SXg8HaRruxBCCAlR6lEMIs0UFYFDkvB4OkjXdiGEEBKi1KMYRJ opKgKHJOHxdJCu7UIIISREqUcxiDRTVAQOScLj6SBd24UQQkiI Uo9iEGmmqAgckoTH00G6tgshhJAQpR7FINJMURE4JAmPp4N0bR dCCCEhSj2KQaSZoiJwSBIeTwfp2i6EEEJClHoUg0gzRUXgkCQ8 ng7StV0IIYSEKPUoBpFmiorAIUl4PB2ka7sQQggJUepRDCLNFB WBQ5LweDpI13YhhBASotSjGESaKSoChyQl3 P9P5p90uRkIO4BAAAAAElFTkSuQmCCAA==

Sorry, I only tested 37 markers to get basic HG.

Wheal
10-05-18, 15:01
I1 (for 67+ markers, try level for I-s, 40+ subclades)

Wheal
10-05-18, 15:38
Haplo-I Subclades and probabilities are as follows:
I-M253-AS6 =>32% I-M253-AS5 =>31% I-M253-AS1 =>12% I-M253-AS1H =>6% I-M253-AS9a =>4% I-M253-EE =>4% I-M253-ML =>3% I-M253-ASgen =>2% I-M253-1313 =>2% I-M253-AS8 =>1% I-M253-AS10 =>1%

spruithean
13-05-18, 22:16
I have taken the numbers generously compiled by Expredel to make the following tables:

1. Percent of I1a3 (Z63) of total I1 in a country (column K)

10093

2. Percent of I1a3 (Z63) of total population in a country (column L)

10094

England/Netherlands and UK/Germany similarity shows that Z63 was a small contingent of the Saxons.

Overall, Z63 was not as prolific as the other two main I1 branches.

I1a2 has a surprising spread from Scandinavia to the Isles and mainland Europe. I1a3, doesn't seem to be as prolific, but perhaps that is due to lack of testing? Can we really attribute Z58, Z63 to just the Saxons? L22 and friends seem to be quite assuredly Scandinavian (or so it seems). Z58 and Z63 seem to be less definitive with their distribution.

I1a3_Young
14-05-18, 19:00
I1a2 has a surprising spread from Scandinavia to the Isles and mainland Europe. I1a3, doesn't seem to be as prolific, but perhaps that is due to lack of testing? Can we really attribute Z58, Z63 to just the Saxons? L22 and friends seem to be quite assuredly Scandinavian (or so it seems). Z58 and Z63 seem to be less definitive with their distribution.

I never said Z63 was only Saxon, but that it was surely carried by the Saxons. It's the same with the Gothic tribes. Z63 predates the formation of these tribes and they both got low amounts because of shared Germanic heritage.

Z58 has many Nordic subclades and is widely distributed while Z63 spread into Scandinavia is probably incidental contact with continental Z63 carriers over time, rather than being a source of Z63.

Z58 also has a more north to south distribution. Heavy in Scandinavia, Germany, and the southern tribes like Allemans. Z63 is more east to west, being more Saxon and Gothic but less Scandinavian. I suspect there is less Z63 in places like Austria, Slovenia, Switzerland because Z63 might not have been as common in the southern German tribes.

As for evidence of Saxon distribution of Z63, check the FTDNA map thread again to see where the Z63 clusters are located in Britain. Saxon lands and lowland Scotland.

The Hamilton clan in Scotland is Z63 and has had many BigY tests, skewing the results. Their claim for their lineage is Norman.

Aside from the Hamiltons there's nobody on Yfull with Z63 that has a Scotland flag set.

spruithean
15-05-18, 16:41
Haplo-I Subclades and probabilities are as follows:
I-M253-AS6 =>32% I-M253-AS5 =>31% I-M253-AS1 =>12% I-M253-AS1H =>6% I-M253-AS9a =>4% I-M253-EE =>4% I-M253-ML =>3% I-M253-ASgen =>2% I-M253-1313 =>2% I-M253-AS8 =>1% I-M253-AS10 =>1%

I-M253-AS6 & AS5 seem to belong firmly to the I-Z140 group, specifically the subclade F2642. This may mean that your husband/sons are one of the various branches under I-Z58 (I1a2). That same Haplo-I Subclade predictor places me somewhere between AS6 and AS5, however further SNP testing has found that my Y-haplogroup is downstream of Z58.


I never said Z63 was only Saxon, but that it was surely carried by the Saxons. It's the same with the Gothic tribes. Z63 predates the formation of these tribes and they both got low amounts because of shared Germanic heritage.

Z58 has many Nordic subclades and is widely distributed while Z63 spread into Scandinavia is probably incidental contact with continental Z63 carriers over time, rather than being a source of Z63.

Z58 also has a more north to south distribution. Heavy in Scandinavia, Germany, and the southern tribes like Allemans. Z63 is more east to west, being more Saxon and Gothic but less Scandinavian. I suspect there is less Z63 in places like Austria, Slovenia, Switzerland because Z63 might not have been as common in the southern German tribes.

As for evidence of Saxon distribution of Z63, check the FTDNA map thread again to see where the Z63 clusters are located in Britain. Saxon lands and lowland Scotland.

The Hamilton clan in Scotland is Z63 and has had many BigY tests, skewing the results. Their claim for their lineage is Norman.

Aside from the Hamiltons there's nobody on Yfull with Z63 that has a Scotland flag set.

Ah okay, I see what you mean. I think the distribution and mapping of the distribution for the three main I1 branches could certainly be of major value in the future, especially if we come across more ancient I1 samples in Europe.

I had forgotten about the I-Z63 Hamiltons! Clan Hamilton DNA project has a rather large amount of I1 haplotypes, I seem to recall it was believed that the I-L338 group was likely to be of Anglo-Saxon origin, but perhaps the opinion on that has since changed.

I1a3_Young
16-05-18, 15:55
Ah okay, I see what you mean. I think the distribution and mapping of the distribution for the three main I1 branches could certainly be of major value in the future, especially if we come across more ancient I1 samples in Europe.

I had forgotten about the I-Z63 Hamiltons! Clan Hamilton DNA project has a rather large amount of I1 haplotypes, I seem to recall it was believed that the I-L338 group was likely to be of Anglo-Saxon origin, but perhaps the opinion on that has since changed.

I would agree that it would make more sense for the Hamiltons to be Anglo-Saxon, but I know they claim Norman. Often the origination stories are made up for social standing.

Check out this text from an older book that goes into the details of the intricacies of the Anglo-Saxon origins. Things were very complicated with the migrations to Britain.

http://archive.org/stream/originofanglosax00shoruoft/originofanglosax00shoruoft_djvu.txt

Wheal
17-05-18, 15:25
[QUOTE=spruithean;542782]I-M253-AS6 & AS5 seem to belong firmly to the I-Z140 group, specifically the subclade F2642. This may mean that your husband/sons are one of the various branches under I-Z58 (I1a2). That same Haplo-I Subclade predictor places me somewhere between AS6 and AS5, however further SNP testing has found that my Y-haplogroup is downstream of Z58.

I would say they are downstream of which ever group. There were quite a few additional mutations in each of the top three categories.

The paternal family is from most probably Rotterdam area. At least that is the area that the spouse of the most distant know paternal spouse's family.