PDA

View Full Version : Genetic ancestry changes in Stone to Bronze Age transition in the East European plain



bicicleur
04-07-20, 12:18
Transition from the Stone to the Bronze Age in Central and Western Europe was a period of major
population movements originating from the Ponto-Caspian Steppe. Here, we report new genome-wide
sequence data from 28 individuals from the territory north of this source area – from the under-studied
Western part of present-day Russia, including Stone Age hunter-gatherers (10,800–4,250 cal BC) and
Bronze Age farmers from the Corded Ware complex called Fatyanovo Culture (2,900–2,050 cal BC).
We show that Eastern hunter-gatherer ancestry was present in Northwestern Russia already from around
10,000 BC. Furthermore, we see a clear change in ancestry with the arrival of farming – the Fatyanovo
Culture individuals were genetically similar to other Corded Ware cultures, carrying a mixture of Steppe
and European early farmer ancestry and thus likely originating from a fast migration towards the
northeast from somewhere in the vicinity of modern-day Ukraine, which is the closest area where these
ancestries coexisted from around 3,000 BC.

https://www.biorxiv.org/content/10.1101/2020.07.02.184507v1

Maciamo
04-07-20, 13:38
All the samples are from Northwest Russia, between Moscow and Vologda, except the two Mesolithic samples which are north of Vologda.

The only male Mesolithic sample is R1a5-YP1301 (under YP1272).

The Neolithic male sample is Q1a2-L54 (the Proto-Ameridian and Mongolian branch, also found in Scandinavia today as L804).

All the Bronze Age Fatyanovo samples are R1a, with 4x R1a-M417, 4x R1a-Z645 and 6x R1a-Z93.

A quick reminder of where they fit on the tree.

https://www.eupedia.com/images/content/R1a-tree.png

Here is a summary of the samples.



Individual
Culture
mt-haplogroup
Y-haplogroup


BER001
Volosovo/Lyalovo
K1+16362
Q1-L54


KAR001
Veretye
T2a1b1
-


PES001
Veretye
U4a1
R1a5-YP1301 (under YP1272)


BOL001
Fatyanovo
H1b
R1a-M417


BOL002
Fatyanovo
J1c1b1a1
-


BOL003
Fatyanovo
H41a
R1a2-Z93


GOL001
Fatyanovo
T2b
R1a-M417


HAL001
Fatyanovo
N1a1a1a2
R1a2-Z93


HAN001
Fatyanovo
NA
-


HAN002
Fatyanovo
U5a1a1
R1a2-Z93


HAN003
Fatyanovo
NA
-


HAN004
Fatyanovo
H6a1a
R1a2-Z93


IVA001
Fatyanovo
U4a1b
-


MIL001
Fatyanovo
U5b2c
-


MIL002
Fatyanovo
H
-


MOT001
Fatyanovo
U2e1b
-


NAU001
Fatyanovo
T2a1b1a
R1a2-Z93


NAU002
Fatyanovo
U5b2a1a2
R1a2-Z93


NIK001
Fatyanovo
U
-


NIK002
Fatyanovo
U5a1a1
R1a-Z645


NIK003
Fatyanovo
H15a1
R1a-M417


NIK004
Fatyanovo
T2a1a
-


NIK005
Fatyanovo
J1c1b1a1
-


NIK006
Fatyanovo
W1c
-


NIK007
Fatyanovo
U5a1b
-


NIK008A
Fatyanovo
H5b
R1a-Z645 (xZ283)


NIK008B
Fatyanovo


RDT001
Fatyanovo
NA
-


RDT002
Fatyanovo
T2b
-


RDT003
Fatyanovo
NA
-


RDT004
Fatyanovo
NA
-


SKO001
Fatyanovo
U2e1b
-


TIM001
Fatyanovo
K1b1a1+199
NA


TIM002
Fatyanovo
N1a1a1a2
-


TIM003
Fatyanovo
NA
-


TIM004
Fatyanovo
NA
NA


TIM005
Fatyanovo
[email protected]
-


TIM006
Fatyanovo
W6
-


TIM008
Fatyanovo
K1c1
R1a-Z645


TIM009
Fatyanovo
W6
-


TIM010
Fatyanovo
T2a1b1
NA


TIM011
Fatyanovo
U5b2a1a+16311
-


VOD001
Fatyanovo
J1c1b1a
-


VOR001
Fatyanovo
I1a1
-


VOR002
Fatyanovo
H2a1
-


VOR003
Fatyanovo
H6a1a
R1a-Z645


VOR004
Fatyanovo
W6
-


VOR005
Fatyanovo
K2a5b
R1a-M417

Maciamo
04-07-20, 13:53
Autosomally, the Fatyanovo individuals are very similar to the other Corded Ware people as well as (presumably northern) Bell Beaker samples.

12238

ratchet_fan
04-07-20, 16:29
Does it make sense to call Q1a2-L54 the photo-Amerindian and Mongolian branch? Did it originate in a population that was similar to Amerindians and Mongolians or did it admix into them from an ANE population?

Maciamo
04-07-20, 22:20
Does it make sense to call Q1a2-L54 the photo-Amerindian and Mongolian branch? Did it originate in a population that was similar to Amerindians and Mongolians or did it admix into them from an ANE population?

If I say it, it is because it makes sense and there is evidence for it. Please refer to my history of haplogroup Q (https://www.eupedia.com/europe/Haplogroup_Q_Y-DNA.shtml). Anyway it's not news that hg Q1a was found among ancient Northeast Europeans.

ratchet_fan
04-07-20, 22:30
If I say it, it is because it makes sense and there is evidence for it. Please refer to my history of haplogroup Q (https://www.eupedia.com/europe/Haplogroup_Q_Y-DNA.shtml).

I could be way off base there but yes I get that it is the dominant clade in Amerindians and Mongolians. However, I don't see any ancient DNA proving it originated in a predominantly East Eurasian population.

Anzick-1 is dated to 12600 ybp while Q-L54 formed 18000 ybp with a TMRCA of 15800 ybp (and yfull has been known to underestimate both figures by 10-15% so they might be even older). It would make more sense to be that it originated in a predominantly ANE population that then admixed with East Eurasians to form Native Americans.

I mean Q-F746's descendants are mostly Chinese but AG2 belonged to that clade and it makes more sense for this to be an ANE lineage like P and R than something AG2 got from an upsampled ENA population.

I also see Q1b there is also considered "Mongoloid". Given its distribution (with one clade found predominantly in Central,South and West Asia and another restricted to South Asia) wouldn't it make more sense for it to be associated with WSHG who can be modeled as 30% EHG, 50% ANE and 20% ENA?

Maciamo
04-07-20, 22:43
Also interesting is this table of phenotypes across the ages in Northeast Europe. I have laid over colours to visualise the evolution more easily. Fatyanovo R1a-Z93 tribes had an overall pigmentation similar to that of modern upper-caste North Indians. If they weren't nearly as light as modern Northeast Europeans, it isn't surprising that Indo-Aryans also weren't lighter skinned or haired, even without blending with other populations along the way. It's really during the Iron Age that Northeast Europeans started becoming blue-eyed blonds. Mesolithic EHG were as dark overall as Sub-Saharan Africans (imagine them looking more Ethiopian or Somalian). Mesolithic Latvians had blue eyes, but they were admixed with WHG (Y-hg I2), while Mesolithic Russians were pure EHG (Y-hg R1a).

https://www.eupedia.com/forum/attachment.php?attachmentid=12240

ratchet_fan
04-07-20, 22:53
Also interesting is this table of phenotypes across the ages in Northeast Europe. I have laid over colours to visualise the evolution more easily. Fatyanovo R1a-Z93 tribes had an overall pigmentation similar to that of modern upper-caste North Indians. If they weren't nearly as light as modern Northeast Europeans, it isn't surprising that Indo-Aryans also weren't lighter skinned or haired, even without blending with other populations along the way. It's really during the Iron Age that Northeast Europeans started becoming blue-eyed blonds. Mesolithic EHG were as dark overall as Sub-Saharan Africans (imagine them looking more Ethiopian or Somalian). Mesolithic Latvians had blue eyes, but they were admixed with WHG (Y-hg I2), while Mesolithic Russians were pure EHG (Y-hg R1a).

https://www.eupedia.com/forum/attachment.php?attachmentid=12240

How did Fataynovo have a pigmentation similar to upper-caste North Indians? Their frequency of blue eyes was 25%. Their frequency of blonde + dark blonde hair was 21% while another 21% had brown/dark brown hair. That's lighter pigmented than any population in Asia.

Maciamo
04-07-20, 22:58
I could be way off base there but yes I get that it is the dominant clade in Amerindians and Mongolians. However, I don't see any ancient DNA proving it originated in a predominantly East Eurasian population.

Anzick-1 is dated to 12600 ybp while Q-L54 formed 18000 ybp with a TMRCA of 15800 ybp (and yfull has been known to underestimate both figures by 10-15% so they might be even older). It would make more sense to be that it originated in a predominantly ANE population that then admixed with East Eurasians to form Native Americans.

I mean Q-F746's descendants are mostly Chinese but AG2 belonged to that clade and it makes more sense for this to be an ANE lineage like P and R than something AG2 got from an upsampled ENA population.

I also see Q1b there is also considered "Mongoloid". Given its distribution (with one clade found predominantly in Central,South and West Asia and another restricted to South Asia) wouldn't it make more sense for it to be associated with WSHG who can be modeled as 30% EHG, 50% ANE and 20% ENA?

Q1a is North Asian rather than East Asian. I think that the fact that the first Amerindians (Clovis culture (https://en.wikipedia.org/wiki/Clovis_culture)) were all Q1a-L54 is proof enough of a Siberian origin over 14,000 years ago. According to Yfull, Q-L54 has a TMRCA of 15,800 years.

Maciamo
04-07-20, 23:11
How did Fataynovo have a pigmentation similar to upper-caste North Indians? Their frequency of blue eyes was 25%. Their frequency of blonde + dark blonde hair was 21% while another 21% had brown/dark brown hair. That's lighter pigmented than any population in Asia.

You are making me doubt. I thought that the table showed the allele frequency, since no population has 100% of blue eyes or blond hair and the table would suggest that Iron Age Ingrians did. That's why I only coloured over the most likely phenotype based on these allele frequencies.

But the table does say phenotype and not genotype. I wonder if that's a mistake. If it's not, then Fatyanovo had people with black, brown and blond hair, but almost all with intermediate to dark skin. Blond hair with dark skin is an extremely unlikely phenotype (unless the hair is discoloured by malnutrition).

Nevertheless blue/grey eyes are relatively common among upper-caste Indians.

https://encrypted-tbn0.gstatic.com/images?q=tbn%3AANd9GcSZnNF7v8cD-T6nPe6z9lwzOYkrfMFY60b_rA&usqp=CAU

https://qph.fs.quoracdn.net/main-qimg-7734c06fb54518a7f63fb226603f4e52.webp

ratchet_fan
05-07-20, 00:28
Q1a is North Asian rather than East Asian. I think that the fact that the first Amerindians (Clovis culture (https://en.wikipedia.org/wiki/Clovis_culture)) were all Q1a-L54 is proof enough of a Siberian origin over 14,000 years ago. According to Yfull, Q-L54 has a TMRCA of 15,800 years.

I agree with a geographical origin in Siberia. North Asia is just a region though. There were everything from ANE to Tianyuan like people there and probably everything in between. I just think it arose in a more ANE like than Tianyuan like population. Amerindians have a lot of ANE so there's nothing that precludes this from being true. Just my opinion.

ratchet_fan
05-07-20, 01:07
You are making me doubt. I thought that the table showed the allele frequency, since no population has 100% of blue eyes or blond hair and the table would suggest that Iron Age Ingrians did. That's why I only coloured over the most likely phenotype based on these allele frequencies.

But the table does say phenotype and not genotype. I wonder if that's a mistake. If it's not, then Fatyanovo had people with black, brown and blond hair, but almost all with intermediate to dark skin. Blond hair with dark skin is an extremely unlikely phenotype (unless the hair is discoloured by malnutrition).

Nevertheless blue/grey eyes are relatively common among upper-caste Indians.

https://encrypted-tbn0.gstatic.com/images?q=tbn%3AANd9GcSZnNF7v8cD-T6nPe6z9lwzOYkrfMFY60b_rA&usqp=CAU

https://qph.fs.quoracdn.net/main-qimg-7734c06fb54518a7f63fb226603f4e52.webp

I believe Iron Age Ingrians were a small sample size no?

And the table says phenotype prediction which leads me to believe its not an error.

Also I doubt colored eyes are common among upper caste Indians (maybe compared to lower caste Indians sure). I used to work with a lot of Indians and I didn't see one with light eyes. According to Razib Khan only 10% of the alleles in Punjabis,Gujaratis and Bengalis(all northern I believe?) are of the derived allele which would give a frequency of light eyes of about ~1% according to him. He says the other genes would make this even lower. Even if we separated out upper castes from lower castes no population in India (or even Central Asia , Levant, Iran, Turkey) nobody's approaching any significant frequency of light eyes much less the 25% of Fataynovo. He also says this 25% is in line with the Sintashta data.

He also says its unlikely they had dark skin (especially in the sense of black skin).



Also dark skin here I believe is based on a few alleles for pigmentation.

ratchet_fan
05-07-20, 01:08
Actually here's exactly what he said.


This group has been assembling a lot of data on phenotypic SNPs over time transects in Northeast Europe. One has to take these results with a grain of salt because the predictions are trained on modern samples. I do not think, for example, that European hunter-gatherers had “black skin.” I suspect that the Mesolithic populations were genetically different enough that their “light alleles” may not be in our panels, though my suspicion is that they’d be of darker hue as Inuit people are. That being said, selection work aligns with these results that Europeans, in particular, seem to have been getting lighter in many areas down to the present.

The eye color prediction I somewhat trust since it’s quasi-Mendelian (~75% of the variance is due to one genetic location in Europeans). For the pigmentation, I would focus on the trend, not the absolute value. Anyone who has been to the Northeast Baltic (I have) knows that these are amongst the fairest people in the world. It is very unsurprising that these people have been getting paler over time.

There have been various arguments on this blog and elsewhere as to what the Sintashta people would look like. I’ve posted the Narasimhan et al. data before. The results are broadly similar to the ones above for the Fataynovo.

The Fataynovo do not have the pigmentation genetic architecture that is similar to Nordic people. But, neither are they out of keeping with some European peoples. The Sintashta would be ~25% blue-eyed according to Narasimhan et al.’s data. In the 1000 Genomes about 10% of the alleles in Punjabis, Gujaratis, and Bengalis is the derived variant so common in Northern Europe, giving a recessive frequency ~1% of so blue-eyed, which is too high since other genes have an influence in these cases (though this allele is found in West Asia at appreciable frequencies, including in very old ancient DNA).

https://www.brownpundits.com/2020/07/04/the-arctic-home-of-the-aryans/

Shahmiri
05-07-20, 06:14
I believe Iron Age Ingrians were a small sample size no?

And the table says phenotype prediction which leads me to believe its not an error.

Also I doubt colored eyes are common among upper caste Indians (maybe compared to lower caste Indians sure). I used to work with a lot of Indians and I didn't see one with light eyes. According to Razib Khan only 10% of the alleles in Punjabis,Gujaratis and Bengalis(all northern I believe?) are of the derived allele which would give a frequency of light eyes of about ~1% according to him. He says the other genes would make this even lower. Even if we separated out upper castes from lower castes no population in India (or even Central Asia , Levant, Iran, Turkey) nobody's approaching any significant frequency of light eyes much less the 25% of Fataynovo. He also says this 25% is in line with the Sintashta data.

He also says its unlikely they had dark skin (especially in the sense of black skin).



Also dark skin here I believe is based on a few alleles for pigmentation.

About 30% of Iranians have light eyes but most of them are light brown: https://www.sciencedirect.com/science/article/pii/S2452232518300210

http://uupload.ir/files/911_iraneyes.jpg

Maciamo
05-07-20, 10:51
I believe Iron Age Ingrians were a small sample size no?

Exactly. In fact all these ancient populations have small sample size (anything under 100 is tiny, and under 1000 is still small when it comes to determining the evolution of phenotypes in a population). That's why it would have been much more useful to mention genotypes than phenotypes. A phenotype is only applicable to one specific individual with a specific set of genes. But genes, or rather alleles, get mixed at every generation. If you take two hypothetical populations mixing, with always one parent from each group. Let's say that one group is pure blue eyed (2 blue eye alleles) and the other group is pure brown eyed (2 brown eye alleles). In terms of phenotypes and genotypes, we get 50% blue eyes and 50% brown eyes. However, after these couples have children, the first generation will almost all have brown eyes (or yellow or hazel). So we get the exact same genotype in the population (50% blue, 50% brown), but a completely different phenotypic population (0% blue, 100% brown/hazel/yellow). Population geneticists should look at genotypes within a population, because phenotypes change at every generation, and knowing the alleles does not predict with 100% certainty the phenotype anyway. That's why I assumed that a scientific paper by professional population geneticists would list genotypes. But it would seem that they did choose phenotypes instead.



Also I doubt colored eyes are common among upper caste Indians (maybe compared to lower caste Indians sure). I used to work with a lot of Indians and I didn't see one with light eyes. According to Razib Khan only 10% of the alleles in Punjabis,Gujaratis and Bengalis(all northern I believe?) are of the derived allele which would give a frequency of light eyes of about ~1% according to him. He says the other genes would make this even lower. Even if we separated out upper castes from lower castes no population in India (or even Central Asia , Levant, Iran, Turkey) nobody's approaching any significant frequency of light eyes much less the 25% of Fataynovo. He also says this 25% is in line with the Sintashta data.


Obviously, since I thought the data was genotypes, 25% of blue eyes alleles would only give a few percents of actual light eyes (more often grey than blue among Indians). That's why I said above that Fatyanovo people were similar to upper-caste North Indians. Razib Khan may be right about 10% of derived blue eyes alleles in North India, but that is an average for all castes. There is a huge difference in pigmentation between upper and lower castes. I spent 5 months travelling around India and my aim was mainly to study the people, culture and history from an anthropological point of view. The upper castes, the Brahmins and the Kshatriyas, make up approximately 20 percent of India’s population, although the frequency varies by region (the highest are in Uttarakhand and Uttar Pradesh in the top north, along the border of Nepal). I wouldn't be surprised if Brahmins from Northwest India had 25% of blue eyes alleles (thus maybe 1 to 5% of actual light eyes).

Dorquest
05-07-20, 13:27
Q1a is North Asian rather than East Asian. I think that the fact that the first Amerindians (Clovis culture (https://en.wikipedia.org/wiki/Clovis_culture)) were all Q1a-L54 is proof enough of a Siberian origin over 14,000 years ago. According to Yfull, Q-L54 has a TMRCA of 15,800 years.

What is the consensus on the TMRCA of Q1A-M930? The split between Native Americans{M3} and Scandinavians {L804}.

ratchet_fan
05-07-20, 13:32
About 30% of Iranians have light eyes but most of them are light brown: https://www.sciencedirect.com/science/article/pii/S2452232518300210

http://uupload.ir/files/911_iraneyes.jpg

I think light eyes to most people mean grey, blue and green and maybe mixed eyes.
But it is interesting that green eyes are more common than blue and men are more light eyed than women.
Also not much of a difference in green and blue yes between the north and south.

ratchet_fan
05-07-20, 13:34
Exactly. In fact all these ancient populations have small sample size (anything under 100 is tiny, and under 1000 is still small when it comes to determining the evolution of phenotypes in a population). That's why it would have been much more useful to mention genotypes than phenotypes. A phenotype is only applicable to one specific individual with a specific set of genes. But genes, or rather alleles, get mixed at every generation. If you take two hypothetical populations mixing, with always one parent from each group. Let's say that one group is pure blue eyed (2 blue eye alleles) and the other group is pure brown eyed (2 brown eye alleles). In terms of phenotypes and genotypes, we get 50% blue eyes and 50% brown eyes. However, after these couples have children, the first generation will almost all have brown eyes (or yellow or hazel). So we get the exact same genotype in the population (50% blue, 50% brown), but a completely different phenotypic population (0% blue, 100% brown/hazel/yellow). Population geneticists should look at genotypes within a population, because phenotypes change at every generation, and knowing the alleles does not predict with 100% certainty the phenotype anyway. That's why I assumed that a scientific paper by professional population geneticists would list genotypes. But it would seem that they did choose phenotypes instead.



Obviously, since I thought the data was genotypes, 25% of blue eyes alleles would only give a few percents of actual light eyes (more often grey than blue among Indians). That's why I said above that Fatyanovo people were similar to upper-caste North Indians. Razib Khan may be right about 10% of derived blue eyes alleles in North India, but that is an average for all castes. There is a huge difference in pigmentation between upper and lower castes. I spent 5 months travelling around India and my aim was mainly to study the people, culture and history from an anthropological point of view. The upper castes, the Brahmins and the Kshatriyas, make up approximately 20 percent of India’s population, although the frequency varies by region (the highest are in Uttarakhand and Uttar Pradesh in the top north, along the border of Nepal). I wouldn't be surprised if Brahmins from Northwest India had 25% of blue eyes alleles (thus maybe 1 to 5% of actual light eyes).

Okay that makes sense. 25% of the derived alleles would give about 6.25% light eyes which is in line with what you saw. I wonder why grey predominates though. I would think the order would (in decreasing frequency) hazel >green > blue > grey.

Maciamo
05-07-20, 13:54
What is the consensus on the TMRCA of Q1A-M930? The split between Native Americans{M3} and Scandinavians {L804}.

Almost the same as L54. It split a few centuries later, circa 15,000 years ago.

bicicleur
05-07-20, 17:58
the biggest surprise in the study is the dating
Fatyanovo existed much earlier than what was accepted till now

also interesting is the 12,7 ka Veretye HG R1a-YP1272
the 8,4 ka Karelia HG was R1a-M459*
could R1a-M459 be born between Lake Onega & the Ural Mts?

https://www.yfull.com/tree/R-M459/

Shahmiri
05-07-20, 19:58
R1a-M417 is an Indo-Iranian haplogroup, it has been also found far south in the Levant where ancient Mitanni was located, there are several Indo-Iranian words in Finno-Ugric languages, so this culture certainly existed in the north of Eurasia too, we know from Sarmatia in modern Poland to India, different Indo-Iranian people lived in ancient times but most of Scytho-Sarmatians adopted Balto-Slavic languages.

ratchet_fan
05-07-20, 21:01
R1a-M417 is an Indo-Iranian haplogroup, it has been also found far south in the Levant where ancient Mitanni was located, there are several Indo-Iranian words in Finno-Ugric languages, so this culture certainly existed in the north of Eurasia too, we know from Sarmatia in modern Poland to India, different Indo-Iranian people lived in ancient times but most of Scytho-Sarmatians adopted Balto-Slavic languages.

R1a-M417 Is not an Indo-Iranian haplogroup. Only one subclade of R1a-M417 is. The other major subclades CTS4385, Z280, Z284 and M458 have very little to nothing to do with Indo-Iranians.

Shahmiri
05-07-20, 21:30
R1a-M417 Is not an Indo-Iranian haplogroup. Only one subclass of R1a-M417 is.

Which one? For example what was Sarmatian haplogroup?

https://kherada.com/Picture/0-7407-sarmatia%201604.jpg

real expert
05-07-20, 22:20
...... Mesolithic EHG were as dark overall as Sub-Saharan Africans (imagine them looking more Ethiopian or Somalian). Mesolithic Latvians had blue eyes, but they were admixed with WHG (Y-hg I2), while Mesolithic Russians were pure EHG (Y-hg R1a).

https://www.eupedia.com/forum/attachment.php?attachmentid=12240

I rather imagine the Cheddar man, WHGs or these dark EHGs to look like these people.

Indians:


https://i.pinimg.com/originals/c4/5b/3e/c45b3ed5552493815f277f1a4ee850d4.jpg

https://i.pinimg.com/564x/6d/28/7a/6d287a3f274ba7c65e8a4e0d4919b6c2.jpg

or like this dark Yemenite man.


https://i.pinimg.com/originals/44/89/2c/44892c20f53ba0bd8b0072ffc3ce98e7.jpg


In my opinion the researchers made the skin tone of the Cheddar man way too dark.

Anyway the WHGs had a very exotic combination of dark skin and light eyes.

Angela
05-07-20, 22:29
EHG were dark haired and dark eyed, but they had lighter skin.

real expert
05-07-20, 22:42
EHG were dark haired and dark eyed, but they had lighter skin.


Yes, however my comment was referring to Maciamo's claim that Mesolithic EHG were dark as SSAs and resembling modern Horners.

ratchet_fan
05-07-20, 23:10
Which one? For example what was Sarmatian haplogroup?
https://kherada.com/Picture/0-7407-sarmatia%201604.jpg

Sarmatians were long gone by the time of the Holy Roman Empire. This isn't a serious map is it?

Shahmiri
06-07-20, 06:09
Sarmatians were long gone by the time of the Holy Roman Empire. This isn't a serious map is it?

https://en.wikipedia.org/wiki/Sarmatism: Sarmatism (or Sarmatianism) is an ethno-cultural concept with a shade of politics designating the formation of an idea of Poland's origin from Sarmatians, an Iranic people, within the Polish-Lithuanian Commonwealth.

And this is the map of Sarmatia by the time of ancient Roman Empire:

http://uupload.ir/files/bye6_sarmatia.jpg

According to the Cambridge History of Iran, the Lusatian culture (1300 BC – 500 BC) in modern Poland, and part of Germany, Czech Republic and Slovakia, was destroyed by ancient Scythians in 500 BC, page 192:

http://www.allempires.com/Uploads/ScythFinds.jpg

One of the greatest Scythian treasures has been found in the Province of Brandenburg in Germany, near to Poland border: https://en.wikipedia.org/wiki/Vettersfelde_Treasure

R1a haplogroup in the east of Europe, especially Poland and Ukraine, is an Indo-Iranian haplogroup, Hungarian linguist Janos harmatta mentions a large numebr of Iranian loanwords not only in Finno-Ugric but also in Dacian and other early IE languages in the east of Europe, like Proto-Baltic and Proto-Germanic, for example Proto-Baltic *spand: https://en.wiktionary.org/wiki/spo%C5%BEs#Latvian and Proto-Germanic *paþaz: https://en.wiktionary.org/wiki/Reconstruction:Proto-Germanic/pa%C3%BEaz

Ygorcs
07-07-20, 01:10
Also interesting is this table of phenotypes across the ages in Northeast Europe. I have laid over colours to visualise the evolution more easily. Fatyanovo R1a-Z93 tribes had an overall pigmentation similar to that of modern upper-caste North Indians. If they weren't nearly as light as modern Northeast Europeans, it isn't surprising that Indo-Aryans also weren't lighter skinned or haired, even without blending with other populations along the way. It's really during the Iron Age that Northeast Europeans started becoming blue-eyed blonds. Mesolithic EHG were as dark overall as Sub-Saharan Africans (imagine them looking more Ethiopian or Somalian). Mesolithic Latvians had blue eyes, but they were admixed with WHG (Y-hg I2), while Mesolithic Russians were pure EHG (Y-hg R1a).https://www.eupedia.com/forum/attachment.php?attachmentid=12240

Mesolithic EHG as dark as Sub-Saharan Africans? Wasn't it usually established by all the prior genetic studies about EHG that they had at least some of the skin-lightening gene mutations so they probably had reasonably light skin, contrary to the WHG? Even for the WHG I tend to think they had minor depigmentation mutations just like those that cause modern Sub-Saharan Africans to have a range of distinct skin colors even when they lack any non-negligible West Eurasian ancestry. Not that I think that they were light-skinned, like those denialists that always exist usually for the wrong reasons, and not just because of scientific skepticism. I rather envision the WHG as being basically Khoisan-like or maybe Tigray/Amhara-like in skin color, that is, dark, but certainly less dark than the average Sub-Saharan African. They lived for many millennia in latitudes that are far more temperate and less exposed to strong sun radiation than anything that exists in Africa (even the Cape region), and much (most?) of their ancestry derived from even earlier Gravettians that had lived in Europe also for a very long time. I really doubt that would've caused no skin depigmentation at all since the out of Africa migration.

As for the Fatyanovo R1a-Z93, I had already suspected that was one of the main early Indo-Iranian cultures, but are you sure about their complexion being similar to that of upper caste North Indians? Maybe those North Indians of upper caste who look lighter, but the average of them still looks pretty dark-skinned even compared to Pashtuns and Balochs, let alone to Europeans.

I think we could expect the Indo-Aryans to be at least a bit lighter-skinned than the lighter half of the upper caste Northern Indians, considering the average Yaghnobi Tajiks' (who have as much as ~40% steppe_MLBA ancestry) skin complexion, which is pretty light (though not "Northeastern European" pale skin), and also simple logic: if you mixed mostly Dravidian-like people with just a minority of Upper Caste North Indian-looking people and put them to evolve for more than 3,500 years in tropical and subtropical but not high-latitude areas (so, no strong selective pressure for skin depigmentation), you'd get people who have a darker skin complexion than the modern mixed Upper Caste North Indians have.

But, after all is said and done, I agree with you, and Razib Khan had already argued that months ago: the CWC-derived people were still mostly pretty "swarthy" in comparison with modern North Europeans, and the lightening process accelerated a lot after 4,000 years ago.

Ygorcs
07-07-20, 06:04
You are making me doubt. I thought that the table showed the allele frequency, since no population has 100% of blue eyes or blond hair and the table would suggest that Iron Age Ingrians did. That's why I only coloured over the most likely phenotype based on these allele frequencies.

But the table does say phenotype and not genotype. I wonder if that's a mistake. If it's not, then Fatyanovo had people with black, brown and blond hair, but almost all with intermediate to dark skin. Blond hair with dark skin is an extremely unlikely phenotype (unless the hair is discoloured by malnutrition).

Nevertheless blue/grey eyes are relatively common among upper-caste Indians.

I'm really starting to think that scientists should include examples of what range of color they consider to be "light", "dark", "intermediate", since those are so broad, imprecise and subjective terms that are arbitrarily distinguished from each other at this or that particular shades of the spectrum. How dark is "dark", and when it is just defined as "intermediate"? I mean, I've read Northern Europeans describing Middle Easterners as dark, when to me the large majority of them are really far from "dark" and would instead be mostly between light and intermediate.

Ygorcs
07-07-20, 06:20
I think light eyes to most people mean grey, blue and green and maybe mixed eyes.
But it is interesting that green eyes are more common than blue and men are more light eyed than women.
Also not much of a difference in green and blue yes between the north and south.

What are "mixed eyes"? Personally I would consider so-called "amber" and "honey" eyes, which are very light brown eyes with goldenish or yellowish, and sometimes even slightly greenish tones under sun exposure, "borderline light eyes", but still light. They're the most beautiful eye colors for me, and pretty rare.

https://www.eupedia.com/forum/image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxITEhUSEhMWFRUWEBUVGBUSFRUaFxUVFRUWFxcVFR cYHSggGBolGxUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0O FxAQGC0dFR0tLS0rLS0tLS0rLSstLS0tLSstKy0rLSstLSstLS 0tKystKy0tNystKys3Ny0tKystK//AABEIAJsBRAMBIgACEQEDEQH/xAAcAAABBQEBAQAAAAAAAAAAAAACAQMEBQYABwj/xAA6EAABAwIFAQcCBQMCBwEAAAABAAIRAyEEBRIxQVEGEyJhcY GhkfAyscHR4RRCUmLxFSNygpKiwgf/xAAZAQADAQEBAAAAAAAAAAAAAAAAAQIDBAX/xAAiEQEBAAICAwACAwEAAAAAAAAAAQIRAyESMUETIgRRcWH/2gAMAwEAAhEDEQA/AN8wJxibYU4F5L1TiIIAUaAMQli6EImlBaGAuld7roQRSUJaul cgOSg3SLgiDRS66MFNkrpT2NHZXakIclQQgUhKElMVK4GydIbz 0UWvXgEusAPcJvFY4NE7ep4WJ7TdqTOhhJvJjyHypXItszzRuo Uxd0SSCBpb6mw9FTZtnIPg1CNMuiSAOB6noqSjXLWGo4gucZJ3 MDZo6FR4sSY8R2BE/wAJ6ULvtTjNmiHQbzw0HoOgHICKpUd Ebx HpeLny5TmHw5DZN72J69fMi9lfZdlcnUfy44lKdnTWRZSYBI25 59Vf0cEdUEW Z8yd1MoDSBHCHvYud5V6TtIYAN4 /ROd60DdV1XG ahVcxHUSgl0/GdBKi1Mas/WzkXuqzE9oWib7dSITNqamO81GfmQ/yWCx/a6ns103vH3soDe0NZ5hlN7rcNNlUwyvxHnHoVTNZ5Ud2ZjqvN8 VmuKB8VF46y0g ij/8aqmPC4n1Nj0IVfiyTeXB6YcwQOxv5rz6jn7zJLXiYtBj2sp EzNzrkOExvPKV47PaplK15xU7Jt9YRvv iozjDHPuYSVccGwCR0tsp8bRcofxxkHqsjmNHUT1O/keFo2VXVXFrQdyJ FLbkYiImd55/2VT9RvbJNpVCAQJkX/wCoWP5JFqG5Y5sgDmVyX5Gm3sLXJ4BR2nqnGrEjwCcTTSllAOB EgCIBAHKUFICuQkaErpSNQHSlQyiQoiVIuIQBJNSbnlMurcbX4 QWhYrEQ0qBiMXpEmZjf E3mNUgtnbWL/MfCrc7r2N4gXPm7p7SfZM9KfNs1cdTv9VunsOiz7MJ3j5m5dpv Fmi7j67qxr0idItIPyfF8CFJw EA022a47b6jAlEh70qauHDnwB4WiGt6k7E/JUkZYS4ARY/AH7kfRWeDwMknzNyOlp slT6OFALulmz5c/p9Ey2iYLBgub0B DMK6gAc9VHdUHooeLx8BOFtOxGLjyHkqrF5mAYnr8eao8yztrZ JI2J3IWRzLtFLgBNjwqmNvpGWUx9tjjM7IIEjpus3mHakTDXaj 0HwFn8QatV rVLQbFoubSpWV06WsSIc6ILZ8RImxNhBAlbzhn1jlzf0dZVxdc 2Ghs/3Db23UnL8ppOqvp4l5LwT4ZIaRpmf1XYXMHUHlj3ASZB8U3AsS YmDyqrNsWBXFVkkixm/iA3n3WsxnxlcrW0w39PRs1rBYWDQ64uASJ5VTh85fqrGLGo0g6 RaABfaAs3iM/rERMTvFhxsBHRQaePiTclxuU/Attbju0Bkgu1W38N48/os/Ux8kSZPOn1PyoT8U90E3gECbgDy80J0gXmd7W34ITmMhdr05q0 uplseF3xBF1OfnA4H9wF9 LwFk6L/AI28ievVO06u08En bIuMqplpocRjoB2n1lP5Tk76pDnm0gjz9E12ey3vHBxu0bEjcz 0/Vej5dgutx7XJssM7rqNcMb7pjKsqA2HKuW5dYHpv6c/fkrDBYOfv81a0sKOB7fusq1Zl Widt7rloe7a2xm23pwuWatm2OTgTLDZGHLNpUgFECmGvTgcmR5 pRApoImoB0ImlNgogUFThckBSSunyQCwhKJIUGSUrihPkgqPSA KroFt1Bq1ovwnaj t/0UV435HUf/QRs9Cx/ibbgg344v8AVVONYXt4J1gOHTSP2BVg1pjTu0ix5b 4UWrSMkyLxbzG/wCQ9iVWwq3YXxAnkuj30/sp5w8welvoD 6e0bQNnTf1tf3P0Unu/u6Nloz3YaI scDhRsRUgwPdTajt/wBlU4 tpGyZImNxUA3usdnmftb5nzNkfaXONDSZ3t7/AH1WHZTdWcXHYfJPAW/Fx7Y8mfj/AKPE459Uk8bT0nomRTEnk8TwR alOcxmm/h0uBgRfi/VQ67WlxLXexkGfb7uurGact3fZ7E1HAGDYwS2eeqdxOYd4BNMg Af27BwFiOhV/wBmuxlSv4qu1ouZWpz3suylhwxrdyLm90sspO1Y4vK 8c6Jl0WBK1HZTsmK7e8qtqua5/dt7ppIFS0NqcgOEwdpAlWLcia1sBsfCq8F2vzDAtqUsPUDGNqy RoaTLuk8WUcPLM7dHyY MWnbjsC7AnvCB3GpjdWqXanbS3ccSeqrKPZtj29FXZ523x Mp9ziK2thcDp0tFxsbBbXIKBDGav8Asv5Wf45LKrg/bqq7s1kzW1e6c0ODmkguAsR0V/mvZeg1hc5gPS1yVKwdNoq03WEE3PFiqjth2hL9Xd3ZTiSDEAkj Udrny4S4s7ljL9X6t36YnMcN3Du7YRvqO1ieAlo4YVCGhoJ3JE THKWjhadWRDi8mZLpiTx5LTZRkAEAzpkw7kRcGeVvll4xnJ5X/jQZFlrGMaGCLcwfdbDL8LZVvZ/DkeF1yBvtqb1HS 61eGoAffK59uj1HUsPEH29fVS2sER5JxjFzen3CkjVSkCUieIK 5LR6Zpr06HqvoVOqfdUhZNkwFF3iiBycDkSDSY1yeYoLalvNSG PT0SQD5/CIOTTXIw5IHA9dq6IRK6TKAMEpXJGnyXIADKZenXvQOHVKhFem 5v1jjn1b1Ul48vWFHez75CSjTgODBQtpC8e/RPil7ojSVEjaIHXohc5OVVEqEyj2NlqOVBnlSGlXdWqI2WZz qSw2FvuVpJ8Rbp51mVUVapBAhoLjfeNm 5hdWZ3bRTEAjeOpEn16eyk5VSBIcQIdVLrixayzR9bqszJjnVb OuSR0jeV149dOTKbuzn9KC3xf3fhi8O3A9JC2PZPsY1p7yqA4k iARZqruyWTDWKrjO8cgL1TBUQGiFF5O vTW8Wse03J8C1v06Lu1GA1UjAkiD9CpuXNKs8VSEQbp27jH68t 7txMEANgX5nkLOZ/2ZZWM3Y6fxDkeYXo2c5URdk6ZJLRx5hUmM06LDyg2 VyXHPjtuLXcy6rB5b2RZTeHPdrINhHhniVr8JRJECP2/hc59EBgaHaxd0uB39No80dXHMbTc60G7YjxGYAmb7c2U3j5ObX nely48e/FDzOvpdDATa5NmAXJc4 gMDlZjN8vp1XPcw/3adruI3cRwT0TWbZv/UGo1tI0wYDm6yS9wcYvz09FOyfDvDRqnV/aPzvydl3YYTjx6YZXzqHkGR1G1ZJAN9PNvP6fK32S4fWBNiLEG 5DhxPP8oMvwIieo2ELSZTgtJcSBcgj/wAQDPuFnlltthhpKwWEi/8Apj5lXlJmyYos8lNptCz2ZVz29OEa6EbAQkXFoK5AeYYbML6f z/MKW3Mmt/Ebf5Fef/11UGYIHPQ 6CrmzzYi36LGY10V6QMcJkH79FLbjRyvNcHiHi4Loj8Lpn2Vvg 84daWkH1myrWk7bllcbqQK46rIUs2G526qwoZhaxn0ufogNRSx ANlID/qs7h8waVaYfEApBYtf1Rg/ZUOnUCebVUg9MdEupNB6NpTBSUmnr8I2sRQkDYprn0vspwBLoR oIopRtsm6rSpiYqMsmcV1ZqiOKm4gSo5ZCIVQMSTeFn87pE03D aefJabEhU Z0/CfQrSE8/wAUWMafCLMaAD1Jv8lU2WUpcXEbmGg3i8SrHtDAZA3Lvp1T/ZnKHPAcdrewG0rXdmBceE/J36jc5Bl2mlEiQd Fo6WIIhp3sFkKeJNPSBWYZFwHbQdlOfmlMbvkgTvAgb/kVlK3z1frc5djW0yQfQjopNTMWDc/fRecHtEyJkiSACeZ/hQsf2ke0d21pLnlpbBGwkut/wBsrSclcuXHjvb0LG501oMNn1sCsN2izWWOeCwBouGxIHUgmXe gVFnOKr1SxnibqFrmTpMyTtyFEdlznVfG6A5hkuEzcWI95nyVb 37KyY9wOIzMPoVW03ta4lwGhpAAEEAO3JdffqmuzlSuXllQkeC Bqgjfjk7yrfs1ljWsc00wXCoWhx3gWHlt9FdVMuh3exdlxbYc7 KvKTqI1cruoNDJ2AhzRNSLkxE7eEehNlaYfLYgCdwBzp9J4Vth MGCJF Zjr1VrRwkRx f1Wdyq5iYwGCAiRf8lc0KK6hh481MpshSodNqeDUjWlGAkkspQ EkJYTgDC5EuQHhxylxFvpcfCZq5WQdh7gLTvhR3ObsVnpr5M7/TwdvK2yI4d0iLffVW J07jZV9aqOIU9n0bFJ4/uJEbOAIT9FrgQWuiOht 6qn5k1pueU4c3aDd1uqfjkOmmpV3H8QHqN1YYTFEc281kKeeNm 7gplDOmnZwR45f0TdYfHSNuLHafIjqpVGqTtf75WPwmbsNjboR wrzCYkGOev7hTTaFg5TzVWUa6msqIOpTHFGQUwwp mT0RstOAPVEwnn5StRtCqUtmnph7VOcxRnNRZoSq97E33V1Mcx IKaMRlUJ2ElVGa4SASRbqf2WuoUZ45UPPMOC2Bb0Wvj0iZdvGM RQ0YqlUezWxr5LDsdyJ8tghptq1ajyPA17yQxphjROwHRbPH5R LyIsYP0H7pjC5RF43HACJvWlb7Z6hgtJ1RN5v0G8dE7Uwmq3SS PPUbgnyutMMokieJ3C6rlRgx5kRwYS2cjJU8sD3FwktHhF4uID pUzG5e7wug B0W85a71s4q8w Vlo0 Uz5m5 VMGDeI oPoiUaZ85fqLOYaSPIW FYuyydPMO89iCD asqeFfvLem6mU8KeT9EbLSrwOAIfUsACWu25Lb8dQrnD4Bo3Bd bnZSKGEiSBv1VhQw3WEbGoYoUogAQBsplKj0CdpUQE 1o/hBbA1idDUQCIIQQIwuhKEwWFyULkydC5JKVIPCqudeaqcd2laL ON1jq Pc4mT7qNTvY3nY9Fvj/H/tnnz6uo0VXtY64AJ FV1M6rH8Jj0uodNjB I 3Kt8o7PVq41NaRTnm2rqB09VrMMZ8ZXkyv1VVK1R8kuJ53QgCP E4z081tsV2ObSoOqVJ138LHeEDgbX4uss7KnAFxR5YzoTG1DGi Bd21/4R0tBH43Nd8LsPX0Vabi3VoqMOn/KHAwfVaTtT2uw Ka5oy lRqEyKrHkObHEAAEK9bR5KBlaq0 CqTadyPgq3yrtliaLhrOtoNw7eObrMhE0EmFNwxvtczy Pe zvaKjiWamGCNwd2z1atNhqn7L50yPMX4as14JEWdG5Ydx5r2/s/mja1Nr2kEEbjquHm4vDuenZx5 XVamm5SqZsq/DvUyk9YxrT4KcATYKeYrxRQuCjvCmFqacE8oUqKWrtKdIXJSaM dBybxzZH3sjajLZF1rPTP6pMXgwTO8hMswoBIAV26hbbhRqlCL qVIf9Pbb6oBhBwPhTA5dKStoJwjegRjCDoPqpYd/slA8/wBkhtHZhR0H0T7KMC0Jxu3CIIG3MZZPsagBRx1 EwcAhKgBRAISNpRtKCEoTLQ0QCFqWVRUq6UMpCUDQwuQalygaf HlVwJnZDNoi/VDqXL0nA2XY3LKZHeOAcTtPC9PyjBg2iNl5P2Kx8O7snmQvXcl q7XXNnbK6McZo7nmV66LxHC83w2Xk ZNiDuCF7OCHCJG/wCdl2C7IYek99WqNQcAQQTAPNvoUtXKdeyt8XztneUva6QCCDt tsVSjC1CfwmZ5C9c7SZYBXfJ1DUXDiQTYqpq4EEQ1t XE2AWc/k3HeNncXOHy7jEUsqMXUjAYAd4NVgOVv8JlTNABDS49dtrSo9T KWm79It HhE5M60mGMjDZ6KcywyfJaH/8 zdzH91/Y/8A9XJrG5TTdAba8G2 10WTZaaL9Q/y kK8spcdHOr09my rIVpRKzeSVdTQdrfRaKh1XG3 JoCeYmaZTzFeKKMpstTkIHBXUQEIdKNIoUFOMP5IYSqoVxK4Ep p4lPwgcFRRCqUuiZLYU8hNvpqVIRCXbf90 gm 6UqcCN040 6FtMpQ2PvZAODoia5Now0chBD1dETSUI6bog1EGjkpSgCNVCsE HJAeUhXalRCSEoS5JKWxo4uQrkDT46UytSaGNLZJiSePRQ1e5P hg6m4u9Au/O6m3DhN9IGV1g14cZ33C9NyLPRAB3915nUo6CQQd4AG/qjGLdz5CATBj0UZY XcaY5THqvd8LnrBY9E87tkGMeNTYIvN4814lhsTXdLRMgTN/14Vjg8FUddzpDdotr 5 FnZlPrSXG/Gxfm1KsdTRqN4J2m6E1S9gIsC0WHN1UZLgob1kR8X Ve4XCkN0CwFtuPJY1r/iNhnFsCTqDvv6KS7AmoZJtM qn4bAgX3Pp1VlRwn3wEDSnpZZcW56KTWy8bwrxlCAYCZrsslRp HyEkW81qqCzGWCHn1laeiVlY1x9JlMp5iYYnmFOJp4FCUqQq9I AkSErlOl6KEQQpQmBSuK4IgmgBCHSnighFgNliE006QkKlUMGn dcWJ6EJakZlrUQb aMhc1BuhExqWFwCeiLCQFLC6FRO1LnJQEiA5IlKSCkAlcuJXIN 8fK/7OVJMdIVAFb9mj/wA4DyXfyT9XBxX9mmzXKA4B7RdU9LLxqgjmP1W5Y0aY8gfdRat Fsm3AXFhy2TTry45btXZXlwPiO w9Fd4HLAB7cIsEwBosrTCiydytOY6MYLBNYII5Ks6dKb 3sipsHRWOFHKleiYXC8m/SeFNp0oXMFk80WStI24QotZkqY5tlFfukrSPhPxH1C0GHVDQ/EfUK ope1RLplPsTDU6xOdFYeaUrkLETlUZ02UJSuQpKg2rkgRNQChG 1CiCe0UqBwRoHJ30IElIlcuUKICkCRKEaAeUqMBJCNHsiULkhR CooXALjslJVFshXLkiWzdCFyJCUAJSIiuQH//Z
https://lh3.googleusercontent.com/proxy/qyQmq6DaYeva8nKyxFWoWbJHpsviJvH3eiXc2F989AMSXxTm8f bLvVAYptpxOwfdaxQmQEPGyrzn-qso0KCgfI-BDrBkM8FuVJ2EYgIG2BUr
https://i.pinimg.com/originals/7d/c3/a3/7dc3a393c8b4aa060985b4967543e76a.jpg

Ygorcs
07-07-20, 06:25
R1a-M417 is an Indo-Iranian haplogroup, it has been also found far south in the Levant where ancient Mitanni was located, there are several Indo-Iranian words in Finno-Ugric languages, so this culture certainly existed in the north of Eurasia too, we know from Sarmatia in modern Poland to India, different Indo-Iranian people lived in ancient times but most of Scytho-Sarmatians adopted Balto-Slavic languages.

R1a-M417 and the R1a-majority CWC cultural zone predate Proto-Indo-Iranian people. They are their antecessors. Proto-Indo-Iranian people developed out of a mostly R1a-M417 population and carried particularly its Z93 clade. Don't turn chronology upside down. Finno-Ugric or rather virtually all of Uralic has both Proto-Indo-European and Indo-Iranian loanwords because the Uralic linguistic splits date to around the time of the transition from PIE to early Proto-Indo-Iranian, and Uralic probably expanded to the Baltic area from an eastern homeland north of the Pontic-Caspian steppe and later peopled by CWC people, what may have pushed the originally hunter-gatherers who spoke PU and PFU northward, eastward and northwestward.

No, not everything is about the Iranians and started with the Iranians. I know, shocking, isn't it?

The Sarmatian thing was inveted centuries and centuries ex post factum by the Polish nobility just to distinguish themselves and identify themselves with glorious horse-mounted warriors of the very remote past, unlike all those barefoot and horseless Slavic farmers they ruled. There was in Antiquity no sign of Sarmatian culture (only some Sarmatian influence) and population in Poland, at least not for a long time and in large enough numbers to leave some long-term traces.

Shahmiri
07-07-20, 06:28
the biggest surprise in the study is the dating
Fatyanovo existed much earlier than what was accepted till now
also interesting is the 12,7 ka Veretye HG R1a-YP1272
the 8,4 ka Karelia HG was R1a-M459*
could R1a-M459 be born between Lake Onega & the Ural Mts?
https://www.yfull.com/tree/R-M459/

According to "The phylogenetic and geographic structure of Y-chromosome haplogroup R1a", by Peter A. Underhill et al.:


Of the 24 R1a-M420*(xSRY10831.2) chromosomes in our data set, 18 were sampled in Iran and 3 were from eastern Turkey. Similarly, five of the six observed R1a1-SRY10831.2*(xM417/Page7) chromosomes were also from Iran, with the sixth occurring in a Kabardin individual from the Caucasus. Owing to the prevalence of basal lineages and the high levels of haplogroup diversities in the region, we find a compelling case for the Middle East, possibly near present-day Iran, as the geographic origin of hg R1a.

Shahmiri
07-07-20, 09:42
R1a-M417 and the R1a-majority CWC cultural zone predate Proto-Indo-Iranian people. They are their antecessors. Proto-Indo-Iranian people developed out of a mostly R1a-M417 population and carried particularly its Z93 clade. Don't turn chronology upside down. Finno-Ugric or rather virtually all of Uralic has both Proto-Indo-European and Indo-Iranian loanwords because the Uralic linguistic splits date to around the time of the transition from PIE to early Proto-Indo-Iranian, and Uralic probably expanded to the Baltic area from an eastern homeland north of the Pontic-Caspian steppe and later peopled by CWC people, what may have pushed the originally hunter-gatherers who spoke PU and PFU northward, eastward and northwestward.

No, not everything is about the Iranians and started with the Iranians. I know, shocking, isn't it?

The Sarmatian thing was inveted centuries and centuries ex post factum by the Polish nobility just to distinguish themselves and identify themselves with glorious horse-mounted warriors of the very remote past, unlike all those barefoot and horseless Slavic farmers they ruled. There was in Antiquity no sign of Sarmatian culture (only some Sarmatian influence) and population in Poland, at least not for a long time and in large enough numbers to leave some long-term traces.

I didn't get what you mean, do you mean R1a-M417 is Proto-Indo-European haplogroup? So both Bronze Age Fatyanovo and Levant were Proto-Indo-European cultures in the 3rd-2nd millennium BC?!
The fact is that none of ancient samples from the 3rd-2nd millennium BC in India, Iran, Levant and other regions where Indo-Iranian lived is R1a-Z93, according to "The Formation of Human Populations in South and Central Asia", by Vaghees Narasimhan et al., Steppe ancestry reached South Asia after 1000 BC, about 600 years after the appearance of Indo-Iranian culture in the Levant.

Shahmiri
07-07-20, 12:54
What are "mixed eyes"? Personally I would consider so-called "amber" and "honey" eyes, which are very light brown eyes with goldenish or yellowish, and sometimes even slightly greenish tones under sun exposure, "borderline light eyes", but still light. They're the most beautiful eye colors for me, and pretty rare.

https://www.eupedia.com/forum/image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxITEhUSEhMWFRUWEBUVGBUSFRUaFxUVFRUWFxcVFR cYHSggGBolGxUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0O FxAQGC0dFR0tLS0rLS0tLS0rLSstLS0tLSstKy0rLSstLSstLS 0tKystKy0tNystKys3Ny0tKystK//AABEIAJsBRAMBIgACEQEDEQH/xAAcAAABBQEBAQAAAAAAAAAAAAACAQMEBQYABwj/xAA6EAABAwIFAQcCBQMCBwEAAAABAAIRAyEEBRIxQVEGEyJhcY GhkfAyscHR4RRCUmLxFSNygpKiwgf/xAAZAQADAQEBAAAAAAAAAAAAAAAAAQIDBAX/xAAiEQEBAAICAwACAwEAAAAAAAAAAQIRAyESMUETIgRRcWH/2gAMAwEAAhEDEQA/AN8wJxibYU4F5L1TiIIAUaAMQli6EImlBaGAuld7roQRSUJaul cgOSg3SLgiDRS66MFNkrpT2NHZXakIclQQgUhKElMVK4GydIbz 0UWvXgEusAPcJvFY4NE7ep4WJ7TdqTOhhJvJjyHypXItszzRuo Uxd0SSCBpb6mw9FTZtnIPg1CNMuiSAOB6noqSjXLWGo4gucZJ3 MDZo6FR4sSY8R2BE/wAJ6ULvtTjNmiHQbzw0HoOgHICKpUd Ebx HpeLny5TmHw5DZN72J69fMi9lfZdlcnUfy44lKdnTWRZSYBI25 59Vf0cEdUEW Z8yd1MoDSBHCHvYud5V6TtIYAN4 /ROd60DdV1XG ahVcxHUSgl0/GdBKi1Mas/WzkXuqzE9oWib7dSITNqamO81GfmQ/yWCx/a6ns103vH3soDe0NZ5hlN7rcNNlUwyvxHnHoVTNZ5Ud2ZjqvN8 VmuKB8VF46y0g ij/8aqmPC4n1Nj0IVfiyTeXB6YcwQOxv5rz6jn7zJLXiYtBj2sp EzNzrkOExvPKV47PaplK15xU7Jt9YRvv iozjDHPuYSVccGwCR0tsp8bRcofxxkHqsjmNHUT1O/keFo2VXVXFrQdyJ FLbkYiImd55/2VT9RvbJNpVCAQJkX/wCoWP5JFqG5Y5sgDmVyX5Gm3sLXJ4BR2nqnGrEjwCcTTSllAOB EgCIBAHKUFICuQkaErpSNQHSlQyiQoiVIuIQBJNSbnlMurcbX4 QWhYrEQ0qBiMXpEmZjf E3mNUgtnbWL/MfCrc7r2N4gXPm7p7SfZM9KfNs1cdTv9VunsOiz7MJ3j5m5dpv Fmi7j67qxr0idItIPyfF8CFJw EA022a47b6jAlEh70qauHDnwB4WiGt6k7E/JUkZYS4ARY/AH7kfRWeDwMknzNyOlp slT6OFALulmz5c/p9Ey2iYLBgub0B DMK6gAc9VHdUHooeLx8BOFtOxGLjyHkqrF5mAYnr8eao8yztrZ JI2J3IWRzLtFLgBNjwqmNvpGWUx9tjjM7IIEjpus3mHakTDXaj 0HwFn8QatV rVLQbFoubSpWV06WsSIc6ILZ8RImxNhBAlbzhn1jlzf0dZVxdc 2Ghs/3Db23UnL8ppOqvp4l5LwT4ZIaRpmf1XYXMHUHlj3ASZB8U3AsS YmDyqrNsWBXFVkkixm/iA3n3WsxnxlcrW0w39PRs1rBYWDQ64uASJ5VTh85fqrGLGo0g6 RaABfaAs3iM/rERMTvFhxsBHRQaePiTclxuU/Attbju0Bkgu1W38N48/os/Ux8kSZPOn1PyoT8U90E3gECbgDy80J0gXmd7W34ITmMhdr05q0 uplseF3xBF1OfnA4H9wF9 LwFk6L/AI28ievVO06u08En bIuMqplpocRjoB2n1lP5Tk76pDnm0gjz9E12ey3vHBxu0bEjcz 0/Vej5dgutx7XJssM7rqNcMb7pjKsqA2HKuW5dYHpv6c/fkrDBYOfv81a0sKOB7fusq1Zl Widt7rloe7a2xm23pwuWatm2OTgTLDZGHLNpUgFECmGvTgcmR5 pRApoImoB0ImlNgogUFThckBSSunyQCwhKJIUGSUrihPkgqPSA KroFt1Bq1ovwnaj t/0UV435HUf/QRs9Cx/ibbgg344v8AVVONYXt4J1gOHTSP2BVg1pjTu0ix5b 4UWrSMkyLxbzG/wCQ9iVWwq3YXxAnkuj30/sp5w8welvoD 6e0bQNnTf1tf3P0Unu/u6Nloz3YaI scDhRsRUgwPdTajt/wBlU4 tpGyZImNxUA3usdnmftb5nzNkfaXONDSZ3t7/AH1WHZTdWcXHYfJPAW/Fx7Y8mfj/AKPE459Uk8bT0nomRTEnk8TwR alOcxmm/h0uBgRfi/VQ67WlxLXexkGfb7uurGact3fZ7E1HAGDYwS2eeqdxOYd4BNMg Af27BwFiOhV/wBmuxlSv4qu1ouZWpz3suylhwxrdyLm90sspO1Y4vK 8c6Jl0WBK1HZTsmK7e8qtqua5/dt7ppIFS0NqcgOEwdpAlWLcia1sBsfCq8F2vzDAtqUsPUDGNqy RoaTLuk8WUcPLM7dHyY MWnbjsC7AnvCB3GpjdWqXanbS3ccSeqrKPZtj29FXZ523x Mp9ziK2thcDp0tFxsbBbXIKBDGav8Asv5Wf45LKrg/bqq7s1kzW1e6c0ODmkguAsR0V/mvZeg1hc5gPS1yVKwdNoq03WEE3PFiqjth2hL9Xd3ZTiSDEAkj Udrny4S4s7ljL9X6t36YnMcN3Du7YRvqO1ieAlo4YVCGhoJ3JE THKWjhadWRDi8mZLpiTx5LTZRkAEAzpkw7kRcGeVvll4xnJ5X/jQZFlrGMaGCLcwfdbDL8LZVvZ/DkeF1yBvtqb1HS 61eGoAffK59uj1HUsPEH29fVS2sER5JxjFzen3CkjVSkCUieIK 5LR6Zpr06HqvoVOqfdUhZNkwFF3iiBycDkSDSY1yeYoLalvNSG PT0SQD5/CIOTTXIw5IHA9dq6IRK6TKAMEpXJGnyXIADKZenXvQOHVKhFem 5v1jjn1b1Ul48vWFHez75CSjTgODBQtpC8e/RPil7ojSVEjaIHXohc5OVVEqEyj2NlqOVBnlSGlXdWqI2WZz qSw2FvuVpJ8Rbp51mVUVapBAhoLjfeNm 5hdWZ3bRTEAjeOpEn16eyk5VSBIcQIdVLrixayzR9bqszJjnVb OuSR0jeV149dOTKbuzn9KC3xf3fhi8O3A9JC2PZPsY1p7yqA4k iARZqruyWTDWKrjO8cgL1TBUQGiFF5O vTW8Wse03J8C1v06Lu1GA1UjAkiD9CpuXNKs8VSEQbp27jH68t 7txMEANgX5nkLOZ/2ZZWM3Y6fxDkeYXo2c5URdk6ZJLRx5hUmM06LDyg2 VyXHPjtuLXcy6rB5b2RZTeHPdrINhHhniVr8JRJECP2/hc59EBgaHaxd0uB39No80dXHMbTc60G7YjxGYAmb7c2U3j5ObX nely48e/FDzOvpdDATa5NmAXJc4 gMDlZjN8vp1XPcw/3adruI3cRwT0TWbZv/UGo1tI0wYDm6yS9wcYvz09FOyfDvDRqnV/aPzvydl3YYTjx6YZXzqHkGR1G1ZJAN9PNvP6fK32S4fWBNiLEG 5DhxPP8oMvwIieo2ELSZTgtJcSBcgj/wAQDPuFnlltthhpKwWEi/8Apj5lXlJmyYos8lNptCz2ZVz29OEa6EbAQkXFoK5AeYYbML6f z/MKW3Mmt/Ebf5Fef/11UGYIHPQ 6CrmzzYi36LGY10V6QMcJkH79FLbjRyvNcHiHi4Loj8Lpn2Vvg 84daWkH1myrWk7bllcbqQK46rIUs2G526qwoZhaxn0ufogNRSx ANlID/qs7h8waVaYfEApBYtf1Rg/ZUOnUCebVUg9MdEupNB6NpTBSUmnr8I2sRQkDYprn0vspwBLoR oIopRtsm6rSpiYqMsmcV1ZqiOKm4gSo5ZCIVQMSTeFn87pE03D aefJabEhU Z0/CfQrSE8/wAUWMafCLMaAD1Jv8lU2WUpcXEbmGg3i8SrHtDAZA3Lvp1T/ZnKHPAcdrewG0rXdmBceE/J36jc5Bl2mlEiQd Fo6WIIhp3sFkKeJNPSBWYZFwHbQdlOfmlMbvkgTvAgb/kVlK3z1frc5djW0yQfQjopNTMWDc/fRecHtEyJkiSACeZ/hQsf2ke0d21pLnlpbBGwkut/wBsrSclcuXHjvb0LG501oMNn1sCsN2izWWOeCwBouGxIHUgmXe gVFnOKr1SxnibqFrmTpMyTtyFEdlznVfG6A5hkuEzcWI95nyVb 37KyY9wOIzMPoVW03ta4lwGhpAAEEAO3JdffqmuzlSuXllQkeC Bqgjfjk7yrfs1ljWsc00wXCoWhx3gWHlt9FdVMuh3exdlxbYc7 KvKTqI1cruoNDJ2AhzRNSLkxE7eEehNlaYfLYgCdwBzp9J4Vth MGCJF Zjr1VrRwkRx f1Wdyq5iYwGCAiRf8lc0KK6hh481MpshSodNqeDUjWlGAkkspQ EkJYTgDC5EuQHhxylxFvpcfCZq5WQdh7gLTvhR3ObsVnpr5M7/TwdvK2yI4d0iLffVW J07jZV9aqOIU9n0bFJ4/uJEbOAIT9FrgQWuiOht 6qn5k1pueU4c3aDd1uqfjkOmmpV3H8QHqN1YYTFEc281kKeeNm 7gplDOmnZwR45f0TdYfHSNuLHafIjqpVGqTtf75WPwmbsNjboR wrzCYkGOev7hTTaFg5TzVWUa6msqIOpTHFGQUwwp mT0RstOAPVEwnn5StRtCqUtmnph7VOcxRnNRZoSq97E33V1Mcx IKaMRlUJ2ElVGa4SASRbqf2WuoUZ45UPPMOC2Bb0Wvj0iZdvGM RQ0YqlUezWxr5LDsdyJ8tghptq1ajyPA17yQxphjROwHRbPH5R LyIsYP0H7pjC5RF43HACJvWlb7Z6hgtJ1RN5v0G8dE7Uwmq3SS PPUbgnyutMMokieJ3C6rlRgx5kRwYS2cjJU8sD3FwktHhF4uID pUzG5e7wug B0W85a71s4q8w Vlo0 Uz5m5 VMGDeI oPoiUaZ85fqLOYaSPIW FYuyydPMO89iCD asqeFfvLem6mU8KeT9EbLSrwOAIfUsACWu25Lb8dQrnD4Bo3Bd bnZSKGEiSBv1VhQw3WEbGoYoUogAQBsplKj0CdpUQE 1o/hBbA1idDUQCIIQQIwuhKEwWFyULkydC5JKVIPCqudeaqcd2laL ON1jq Pc4mT7qNTvY3nY9Fvj/H/tnnz6uo0VXtY64AJ FV1M6rH8Jj0uodNjB I 3Kt8o7PVq41NaRTnm2rqB09VrMMZ8ZXkyv1VVK1R8kuJ53QgCP E4z081tsV2ObSoOqVJ138LHeEDgbX4uss7KnAFxR5YzoTG1DGi Bd21/4R0tBH43Nd8LsPX0Vabi3VoqMOn/KHAwfVaTtT2uw Ka5oy lRqEyKrHkObHEAAEK9bR5KBlaq0 CqTadyPgq3yrtliaLhrOtoNw7eObrMhE0EmFNwxvtczy Pe zvaKjiWamGCNwd2z1atNhqn7L50yPMX4as14JEWdG5Ydx5r2/s/mja1Nr2kEEbjquHm4vDuenZx5 XVamm5SqZsq/DvUyk9YxrT4KcATYKeYrxRQuCjvCmFqacE8oUqKWrtKdIXJSaM dBybxzZH3sjajLZF1rPTP6pMXgwTO8hMswoBIAV26hbbhRqlCL qVIf9Pbb6oBhBwPhTA5dKStoJwjegRjCDoPqpYd/slA8/wBkhtHZhR0H0T7KMC0Jxu3CIIG3MZZPsagBRx1 EwcAhKgBRAISNpRtKCEoTLQ0QCFqWVRUq6UMpCUDQwuQalygaf HlVwJnZDNoi/VDqXL0nA2XY3LKZHeOAcTtPC9PyjBg2iNl5P2Kx8O7snmQvXcl q7XXNnbK6McZo7nmV66LxHC83w2Xk ZNiDuCF7OCHCJG/wCdl2C7IYek99WqNQcAQQTAPNvoUtXKdeyt8XztneUva6QCCDt tsVSjC1CfwmZ5C9c7SZYBXfJ1DUXDiQTYqpq4EEQ1t XE2AWc/k3HeNncXOHy7jEUsqMXUjAYAd4NVgOVv8JlTNABDS49dtrSo9T KWm79It HhE5M60mGMjDZ6KcywyfJaH/8 zdzH91/Y/8A9XJrG5TTdAba8G2 10WTZaaL9Q/y kK8spcdHOr09my rIVpRKzeSVdTQdrfRaKh1XG3 JoCeYmaZTzFeKKMpstTkIHBXUQEIdKNIoUFOMP5IYSqoVxK4Ep p4lPwgcFRRCqUuiZLYU8hNvpqVIRCXbf90gm 6UqcCN040 6FtMpQ2PvZAODoia5Now0chBD1dETSUI6bog1EGjkpSgCNVCsE HJAeUhXalRCSEoS5JKWxo4uQrkDT46UytSaGNLZJiSePRQ1e5P hg6m4u9Au/O6m3DhN9IGV1g14cZ33C9NyLPRAB3915nUo6CQQd4AG/qjGLdz5CATBj0UZY XcaY5THqvd8LnrBY9E87tkGMeNTYIvN4814lhsTXdLRMgTN/14Vjg8FUddzpDdotr 5 FnZlPrSXG/Gxfm1KsdTRqN4J2m6E1S9gIsC0WHN1UZLgob1kR8X Ve4XCkN0CwFtuPJY1r/iNhnFsCTqDvv6KS7AmoZJtM qn4bAgX3Pp1VlRwn3wEDSnpZZcW56KTWy8bwrxlCAYCZrsslRp HyEkW81qqCzGWCHn1laeiVlY1x9JlMp5iYYnmFOJp4FCUqQq9I AkSErlOl6KEQQpQmBSuK4IgmgBCHSnighFgNliE006QkKlUMGn dcWJ6EJakZlrUQb aMhc1BuhExqWFwCeiLCQFLC6FRO1LnJQEiA5IlKSCkAlcuJXIN 8fK/7OVJMdIVAFb9mj/wA4DyXfyT9XBxX9mmzXKA4B7RdU9LLxqgjmP1W5Y0aY8gfdRat Fsm3AXFhy2TTry45btXZXlwPiO w9Fd4HLAB7cIsEwBosrTCiydytOY6MYLBNYII5Ks6dKb 3sipsHRWOFHKleiYXC8m/SeFNp0oXMFk80WStI24QotZkqY5tlFfukrSPhPxH1C0GHVDQ/EfUK ope1RLplPsTDU6xOdFYeaUrkLETlUZ02UJSuQpKg2rkgRNQChG 1CiCe0UqBwRoHJ30IElIlcuUKICkCRKEaAeUqMBJCNHsiULkhR CooXALjslJVFshXLkiWzdCFyJCUAJSIiuQH//Z
https://lh3.googleusercontent.com/proxy/qyQmq6DaYeva8nKyxFWoWbJHpsviJvH3eiXc2F989AMSXxTm8f bLvVAYptpxOwfdaxQmQEPGyrzn-qso0KCgfI-BDrBkM8FuVJ2EYgIG2BUr
https://i.pinimg.com/originals/7d/c3/a3/7dc3a393c8b4aa060985b4967543e76a.jpg

They are not rare in Iran but I think Iranians also see them as the most beautiful eye colors, some of the most famous Iranian celebrities have light brown eyes, like this one:

http://uupload.ir/files/uv2d_pakroo2.jpg

http://uupload.ir/files/lrm_pakroo.jpg

ratchet_fan
07-07-20, 13:03
What are "mixed eyes"? Personally I would consider so-called "amber" and "honey" eyes, which are very light brown eyes with goldenish or yellowish, and sometimes even slightly greenish tones under sun exposure, "borderline light eyes", but still light. They're the most beautiful eye colors for me, and pretty rare.

https://www.eupedia.com/forum/image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxITEhUSEhMWFRUWEBUVGBUSFRUaFxUVFRUWFxcVFR cYHSggGBolGxUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0O FxAQGC0dFR0tLS0rLS0tLS0rLSstLS0tLSstKy0rLSstLSstLS 0tKystKy0tNystKys3Ny0tKystK//AABEIAJsBRAMBIgACEQEDEQH/xAAcAAABBQEBAQAAAAAAAAAAAAACAQMEBQYABwj/xAA6EAABAwIFAQcCBQMCBwEAAAABAAIRAyEEBRIxQVEGEyJhcY GhkfAyscHR4RRCUmLxFSNygpKiwgf/xAAZAQADAQEBAAAAAAAAAAAAAAAAAQIDBAX/xAAiEQEBAAICAwACAwEAAAAAAAAAAQIRAyESMUETIgRRcWH/2gAMAwEAAhEDEQA/AN8wJxibYU4F5L1TiIIAUaAMQli6EImlBaGAuld7roQRSUJaul cgOSg3SLgiDRS66MFNkrpT2NHZXakIclQQgUhKElMVK4GydIbz 0UWvXgEusAPcJvFY4NE7ep4WJ7TdqTOhhJvJjyHypXItszzRuo Uxd0SSCBpb6mw9FTZtnIPg1CNMuiSAOB6noqSjXLWGo4gucZJ3 MDZo6FR4sSY8R2BE/wAJ6ULvtTjNmiHQbzw0HoOgHICKpUd Ebx HpeLny5TmHw5DZN72J69fMi9lfZdlcnUfy44lKdnTWRZSYBI25 59Vf0cEdUEW Z8yd1MoDSBHCHvYud5V6TtIYAN4 /ROd60DdV1XG ahVcxHUSgl0/GdBKi1Mas/WzkXuqzE9oWib7dSITNqamO81GfmQ/yWCx/a6ns103vH3soDe0NZ5hlN7rcNNlUwyvxHnHoVTNZ5Ud2ZjqvN8 VmuKB8VF46y0g ij/8aqmPC4n1Nj0IVfiyTeXB6YcwQOxv5rz6jn7zJLXiYtBj2sp EzNzrkOExvPKV47PaplK15xU7Jt9YRvv iozjDHPuYSVccGwCR0tsp8bRcofxxkHqsjmNHUT1O/keFo2VXVXFrQdyJ FLbkYiImd55/2VT9RvbJNpVCAQJkX/wCoWP5JFqG5Y5sgDmVyX5Gm3sLXJ4BR2nqnGrEjwCcTTSllAOB EgCIBAHKUFICuQkaErpSNQHSlQyiQoiVIuIQBJNSbnlMurcbX4 QWhYrEQ0qBiMXpEmZjf E3mNUgtnbWL/MfCrc7r2N4gXPm7p7SfZM9KfNs1cdTv9VunsOiz7MJ3j5m5dpv Fmi7j67qxr0idItIPyfF8CFJw EA022a47b6jAlEh70qauHDnwB4WiGt6k7E/JUkZYS4ARY/AH7kfRWeDwMknzNyOlp slT6OFALulmz5c/p9Ey2iYLBgub0B DMK6gAc9VHdUHooeLx8BOFtOxGLjyHkqrF5mAYnr8eao8yztrZ JI2J3IWRzLtFLgBNjwqmNvpGWUx9tjjM7IIEjpus3mHakTDXaj 0HwFn8QatV rVLQbFoubSpWV06WsSIc6ILZ8RImxNhBAlbzhn1jlzf0dZVxdc 2Ghs/3Db23UnL8ppOqvp4l5LwT4ZIaRpmf1XYXMHUHlj3ASZB8U3AsS YmDyqrNsWBXFVkkixm/iA3n3WsxnxlcrW0w39PRs1rBYWDQ64uASJ5VTh85fqrGLGo0g6 RaABfaAs3iM/rERMTvFhxsBHRQaePiTclxuU/Attbju0Bkgu1W38N48/os/Ux8kSZPOn1PyoT8U90E3gECbgDy80J0gXmd7W34ITmMhdr05q0 uplseF3xBF1OfnA4H9wF9 LwFk6L/AI28ievVO06u08En bIuMqplpocRjoB2n1lP5Tk76pDnm0gjz9E12ey3vHBxu0bEjcz 0/Vej5dgutx7XJssM7rqNcMb7pjKsqA2HKuW5dYHpv6c/fkrDBYOfv81a0sKOB7fusq1Zl Widt7rloe7a2xm23pwuWatm2OTgTLDZGHLNpUgFECmGvTgcmR5 pRApoImoB0ImlNgogUFThckBSSunyQCwhKJIUGSUrihPkgqPSA KroFt1Bq1ovwnaj t/0UV435HUf/QRs9Cx/ibbgg344v8AVVONYXt4J1gOHTSP2BVg1pjTu0ix5b 4UWrSMkyLxbzG/wCQ9iVWwq3YXxAnkuj30/sp5w8welvoD 6e0bQNnTf1tf3P0Unu/u6Nloz3YaI scDhRsRUgwPdTajt/wBlU4 tpGyZImNxUA3usdnmftb5nzNkfaXONDSZ3t7/AH1WHZTdWcXHYfJPAW/Fx7Y8mfj/AKPE459Uk8bT0nomRTEnk8TwR alOcxmm/h0uBgRfi/VQ67WlxLXexkGfb7uurGact3fZ7E1HAGDYwS2eeqdxOYd4BNMg Af27BwFiOhV/wBmuxlSv4qu1ouZWpz3suylhwxrdyLm90sspO1Y4vK 8c6Jl0WBK1HZTsmK7e8qtqua5/dt7ppIFS0NqcgOEwdpAlWLcia1sBsfCq8F2vzDAtqUsPUDGNqy RoaTLuk8WUcPLM7dHyY MWnbjsC7AnvCB3GpjdWqXanbS3ccSeqrKPZtj29FXZ523x Mp9ziK2thcDp0tFxsbBbXIKBDGav8Asv5Wf45LKrg/bqq7s1kzW1e6c0ODmkguAsR0V/mvZeg1hc5gPS1yVKwdNoq03WEE3PFiqjth2hL9Xd3ZTiSDEAkj Udrny4S4s7ljL9X6t36YnMcN3Du7YRvqO1ieAlo4YVCGhoJ3JE THKWjhadWRDi8mZLpiTx5LTZRkAEAzpkw7kRcGeVvll4xnJ5X/jQZFlrGMaGCLcwfdbDL8LZVvZ/DkeF1yBvtqb1HS 61eGoAffK59uj1HUsPEH29fVS2sER5JxjFzen3CkjVSkCUieIK 5LR6Zpr06HqvoVOqfdUhZNkwFF3iiBycDkSDSY1yeYoLalvNSG PT0SQD5/CIOTTXIw5IHA9dq6IRK6TKAMEpXJGnyXIADKZenXvQOHVKhFem 5v1jjn1b1Ul48vWFHez75CSjTgODBQtpC8e/RPil7ojSVEjaIHXohc5OVVEqEyj2NlqOVBnlSGlXdWqI2WZz qSw2FvuVpJ8Rbp51mVUVapBAhoLjfeNm 5hdWZ3bRTEAjeOpEn16eyk5VSBIcQIdVLrixayzR9bqszJjnVb OuSR0jeV149dOTKbuzn9KC3xf3fhi8O3A9JC2PZPsY1p7yqA4k iARZqruyWTDWKrjO8cgL1TBUQGiFF5O vTW8Wse03J8C1v06Lu1GA1UjAkiD9CpuXNKs8VSEQbp27jH68t 7txMEANgX5nkLOZ/2ZZWM3Y6fxDkeYXo2c5URdk6ZJLRx5hUmM06LDyg2 VyXHPjtuLXcy6rB5b2RZTeHPdrINhHhniVr8JRJECP2/hc59EBgaHaxd0uB39No80dXHMbTc60G7YjxGYAmb7c2U3j5ObX nely48e/FDzOvpdDATa5NmAXJc4 gMDlZjN8vp1XPcw/3adruI3cRwT0TWbZv/UGo1tI0wYDm6yS9wcYvz09FOyfDvDRqnV/aPzvydl3YYTjx6YZXzqHkGR1G1ZJAN9PNvP6fK32S4fWBNiLEG 5DhxPP8oMvwIieo2ELSZTgtJcSBcgj/wAQDPuFnlltthhpKwWEi/8Apj5lXlJmyYos8lNptCz2ZVz29OEa6EbAQkXFoK5AeYYbML6f z/MKW3Mmt/Ebf5Fef/11UGYIHPQ 6CrmzzYi36LGY10V6QMcJkH79FLbjRyvNcHiHi4Loj8Lpn2Vvg 84daWkH1myrWk7bllcbqQK46rIUs2G526qwoZhaxn0ufogNRSx ANlID/qs7h8waVaYfEApBYtf1Rg/ZUOnUCebVUg9MdEupNB6NpTBSUmnr8I2sRQkDYprn0vspwBLoR oIopRtsm6rSpiYqMsmcV1ZqiOKm4gSo5ZCIVQMSTeFn87pE03D aefJabEhU Z0/CfQrSE8/wAUWMafCLMaAD1Jv8lU2WUpcXEbmGg3i8SrHtDAZA3Lvp1T/ZnKHPAcdrewG0rXdmBceE/J36jc5Bl2mlEiQd Fo6WIIhp3sFkKeJNPSBWYZFwHbQdlOfmlMbvkgTvAgb/kVlK3z1frc5djW0yQfQjopNTMWDc/fRecHtEyJkiSACeZ/hQsf2ke0d21pLnlpbBGwkut/wBsrSclcuXHjvb0LG501oMNn1sCsN2izWWOeCwBouGxIHUgmXe gVFnOKr1SxnibqFrmTpMyTtyFEdlznVfG6A5hkuEzcWI95nyVb 37KyY9wOIzMPoVW03ta4lwGhpAAEEAO3JdffqmuzlSuXllQkeC Bqgjfjk7yrfs1ljWsc00wXCoWhx3gWHlt9FdVMuh3exdlxbYc7 KvKTqI1cruoNDJ2AhzRNSLkxE7eEehNlaYfLYgCdwBzp9J4Vth MGCJF Zjr1VrRwkRx f1Wdyq5iYwGCAiRf8lc0KK6hh481MpshSodNqeDUjWlGAkkspQ EkJYTgDC5EuQHhxylxFvpcfCZq5WQdh7gLTvhR3ObsVnpr5M7/TwdvK2yI4d0iLffVW J07jZV9aqOIU9n0bFJ4/uJEbOAIT9FrgQWuiOht 6qn5k1pueU4c3aDd1uqfjkOmmpV3H8QHqN1YYTFEc281kKeeNm 7gplDOmnZwR45f0TdYfHSNuLHafIjqpVGqTtf75WPwmbsNjboR wrzCYkGOev7hTTaFg5TzVWUa6msqIOpTHFGQUwwp mT0RstOAPVEwnn5StRtCqUtmnph7VOcxRnNRZoSq97E33V1Mcx IKaMRlUJ2ElVGa4SASRbqf2WuoUZ45UPPMOC2Bb0Wvj0iZdvGM RQ0YqlUezWxr5LDsdyJ8tghptq1ajyPA17yQxphjROwHRbPH5R LyIsYP0H7pjC5RF43HACJvWlb7Z6hgtJ1RN5v0G8dE7Uwmq3SS PPUbgnyutMMokieJ3C6rlRgx5kRwYS2cjJU8sD3FwktHhF4uID pUzG5e7wug B0W85a71s4q8w Vlo0 Uz5m5 VMGDeI oPoiUaZ85fqLOYaSPIW FYuyydPMO89iCD asqeFfvLem6mU8KeT9EbLSrwOAIfUsACWu25Lb8dQrnD4Bo3Bd bnZSKGEiSBv1VhQw3WEbGoYoUogAQBsplKj0CdpUQE 1o/hBbA1idDUQCIIQQIwuhKEwWFyULkydC5JKVIPCqudeaqcd2laL ON1jq Pc4mT7qNTvY3nY9Fvj/H/tnnz6uo0VXtY64AJ FV1M6rH8Jj0uodNjB I 3Kt8o7PVq41NaRTnm2rqB09VrMMZ8ZXkyv1VVK1R8kuJ53QgCP E4z081tsV2ObSoOqVJ138LHeEDgbX4uss7KnAFxR5YzoTG1DGi Bd21/4R0tBH43Nd8LsPX0Vabi3VoqMOn/KHAwfVaTtT2uw Ka5oy lRqEyKrHkObHEAAEK9bR5KBlaq0 CqTadyPgq3yrtliaLhrOtoNw7eObrMhE0EmFNwxvtczy Pe zvaKjiWamGCNwd2z1atNhqn7L50yPMX4as14JEWdG5Ydx5r2/s/mja1Nr2kEEbjquHm4vDuenZx5 XVamm5SqZsq/DvUyk9YxrT4KcATYKeYrxRQuCjvCmFqacE8oUqKWrtKdIXJSaM dBybxzZH3sjajLZF1rPTP6pMXgwTO8hMswoBIAV26hbbhRqlCL qVIf9Pbb6oBhBwPhTA5dKStoJwjegRjCDoPqpYd/slA8/wBkhtHZhR0H0T7KMC0Jxu3CIIG3MZZPsagBRx1 EwcAhKgBRAISNpRtKCEoTLQ0QCFqWVRUq6UMpCUDQwuQalygaf HlVwJnZDNoi/VDqXL0nA2XY3LKZHeOAcTtPC9PyjBg2iNl5P2Kx8O7snmQvXcl q7XXNnbK6McZo7nmV66LxHC83w2Xk ZNiDuCF7OCHCJG/wCdl2C7IYek99WqNQcAQQTAPNvoUtXKdeyt8XztneUva6QCCDt tsVSjC1CfwmZ5C9c7SZYBXfJ1DUXDiQTYqpq4EEQ1t XE2AWc/k3HeNncXOHy7jEUsqMXUjAYAd4NVgOVv8JlTNABDS49dtrSo9T KWm79It HhE5M60mGMjDZ6KcywyfJaH/8 zdzH91/Y/8A9XJrG5TTdAba8G2 10WTZaaL9Q/y kK8spcdHOr09my rIVpRKzeSVdTQdrfRaKh1XG3 JoCeYmaZTzFeKKMpstTkIHBXUQEIdKNIoUFOMP5IYSqoVxK4Ep p4lPwgcFRRCqUuiZLYU8hNvpqVIRCXbf90gm 6UqcCN040 6FtMpQ2PvZAODoia5Now0chBD1dETSUI6bog1EGjkpSgCNVCsE HJAeUhXalRCSEoS5JKWxo4uQrkDT46UytSaGNLZJiSePRQ1e5P hg6m4u9Au/O6m3DhN9IGV1g14cZ33C9NyLPRAB3915nUo6CQQd4AG/qjGLdz5CATBj0UZY XcaY5THqvd8LnrBY9E87tkGMeNTYIvN4814lhsTXdLRMgTN/14Vjg8FUddzpDdotr 5 FnZlPrSXG/Gxfm1KsdTRqN4J2m6E1S9gIsC0WHN1UZLgob1kR8X Ve4XCkN0CwFtuPJY1r/iNhnFsCTqDvv6KS7AmoZJtM qn4bAgX3Pp1VlRwn3wEDSnpZZcW56KTWy8bwrxlCAYCZrsslRp HyEkW81qqCzGWCHn1laeiVlY1x9JlMp5iYYnmFOJp4FCUqQq9I AkSErlOl6KEQQpQmBSuK4IgmgBCHSnighFgNliE006QkKlUMGn dcWJ6EJakZlrUQb aMhc1BuhExqWFwCeiLCQFLC6FRO1LnJQEiA5IlKSCkAlcuJXIN 8fK/7OVJMdIVAFb9mj/wA4DyXfyT9XBxX9mmzXKA4B7RdU9LLxqgjmP1W5Y0aY8gfdRat Fsm3AXFhy2TTry45btXZXlwPiO w9Fd4HLAB7cIsEwBosrTCiydytOY6MYLBNYII5Ks6dKb 3sipsHRWOFHKleiYXC8m/SeFNp0oXMFk80WStI24QotZkqY5tlFfukrSPhPxH1C0GHVDQ/EfUK ope1RLplPsTDU6xOdFYeaUrkLETlUZ02UJSuQpKg2rkgRNQChG 1CiCe0UqBwRoHJ30IElIlcuUKICkCRKEaAeUqMBJCNHsiULkhR CooXALjslJVFshXLkiWzdCFyJCUAJSIiuQH//Z
https://lh3.googleusercontent.com/proxy/qyQmq6DaYeva8nKyxFWoWbJHpsviJvH3eiXc2F989AMSXxTm8f bLvVAYptpxOwfdaxQmQEPGyrzn-qso0KCgfI-BDrBkM8FuVJ2EYgIG2BUr
https://i.pinimg.com/originals/7d/c3/a3/7dc3a393c8b4aa060985b4967543e76a.jpg

Mixed eyes are eyes which have both blue/green and brown. Its a term old school anthropologists used to use.
https://i.pinimg.com/originals/77/03/a3/7703a3bf77d5477a092e08e7ff27947a.png

ratchet_fan
07-07-20, 13:06
According to "The phylogenetic and geographic structure of Y-chromosome haplogroup R1a", by Peter A. Underhill et al.:

This paper is outdated. Not only has the structure of R1a been worked out since then but we have a plethora of ancient DNA since this paper was published.It also doesn't matter where basal clades of haplogroups are found today. Ancient DNA tells a different story. We have plenty of ancient DNA from Europe and R1a (as well as R1b) goes back at least 12,000 years in Europe while all the West Asian DNA indicates there was no R1a (or R1b) there before the Bronze Age.

Shahmiri
07-07-20, 18:59
This paper is outdated. Not only has the structure of R1a been worked out since then but we have a plethora of ancient DNA since this paper was published.It also doesn't matter where basal clades of haplogroups are found today. Ancient DNA tells a different story. We have plenty of ancient DNA from Europe and R1a (as well as R1b) goes back at least 12,000 years in Europe while all the West Asian DNA indicates there was no R1a (or R1b) there before the Bronze Age.

Of course if you don't study the DNA of ancient skeletons in Tepe Sialk and other ancient sites in Central Iran, you will never find R1a there, but for example we see this haplogroup is found in the Bronze Age Levant and it is believed that it came there from Iran, so it certainly existed in the ancient times where it exists today.

ratchet_fan
07-07-20, 19:53
Of course if you don't study the DNA of ancient skeletons in Tepe Sialk and other ancient sites in Central Iran, you will never find R1a there, but for example we see this haplogroup is found in the Bronze Age Levant and it is believed that it came there from Iran, so it certainly existed in the ancient times where it exists today.

You're going to be disappointed. R1a has been found in Europe in multiple sites all without Iran_N admixture. There's nothing to indicate R1a will pop up in Central Iran. And that Bronze Age Levantine came from Central Asian. He can't be modeled without Central Asian admixture or Steppe_MLBA admixture.

Same applies to R1b. Also given how much admixture there was between Anatolia_N, CHG, Iran_N and Levant_N no R1a or R1b in those places either.

Ygorcs
07-07-20, 19:58
Of course if you don't study the DNA of ancient skeletons in Tepe Sialk and other ancient sites in Central Iran, you will never find R1a there, but for example we see this haplogroup is found in the Bronze Age Levant and it is believed that it came there from Iran, so it certainly existed in the ancient times where it exists today.

Far too late, though. That R1a in the Levant dates to the MLBA, from a time where there is a known and documented explanation for what that probably means: Indo-Aryan Mitanni ruling elite. The mostly Central Asian outlier female with small steppe admixture from the same time also proves it and clearly demonstrates the route that steppe ancestry and R1a-M417 must've taken to arrive in the Levant: North-Central Asia > South-Central Asia . Totally fits the most probable route shown by ancient DNA samples: Pontic-Caspian Chalcolithic/EBA cultures (Khvalynsk, Repin, Sredny-Stog) >>> CWC >>> Fatyanovo-Balanovo >>> Sintashta/Andronovo >>> Early Indo-Aryans and Iranic like the ruling elite of the mostly Hurrian Mitanni.

R1a is found in Northeastern Europe as far back as the Mesolithic, and R1a-M417 since the 4th-5th millennium B.C. Chronological order matters. There is no doubt some R1a-M417 may have been present in the Iranian Plateau and Transcaucasia as early as the early or mid 3rd millennium B.C., because there is already some Pontic-Caspian (therefore Eastern European EHG-admixed) admixture in EMBA Armenia and Northwestern Iran. That says nothing about the origins of R1a-M417, the TMRCA of which basically coincides (chronologically) with the early Pontic-Caspian steppe cultures assumed to be related to the big steppe expansion of the late 4th-early 3rd millennium B.C., and it is found in Northeastern European aDNA samples only centuries after its TMRCA is estimated to have happened. Nothing today points to an origin and an initial dispersal of R1a from Iran, but especially NOT that of its specific and much more recent clade R1a-M417.

Shahmiri
07-07-20, 20:35
You're going to be disappointed. R1a has been found in Europe in multiple sites all without Iran_N admixture. There's nothing to indicate R1a will pop up in Central Iran. And that Bronze Age Levantine came from Central Asian. He can't be modeled without Central Asian admixture or Steppe_MLBA admixture.

Same applies to R1b. Also given how much admixture there was between Anatolia_N, CHG, Iran_N and Levant_N no R1a or R1b in those places either.

In the ancient times Central Asians couldn't fly over Iran to reach the Levant, anyway it is not important because this haplogroup is R1a-M417, not a subclade of R1a-Z93, and Central Asia is not in the Europe but Greater Iran:

https://upload.wikimedia.org/wikipedia/commons/4/45/Greater_Iran_Map.png

Ygorcs
07-07-20, 21:42
I didn't get what you mean, do you mean R1a-M417 is Proto-Indo-European haplogroup? So both Bronze Age Fatyanovo and Levant were Proto-Indo-European cultures in the 3rd-2nd millennium BC?!
The fact is that none of ancient samples from the 3rd-2nd millennium BC in India, Iran, Levant and other regions where Indo-Iranian lived is R1a-Z93, according to "The Formation of Human Populations in South and Central Asia", by Vaghees Narasimhan et al., Steppe ancestry reached South Asia after 1000 BC, about 600 years after the appearance of Indo-Iranian culture in the Levant.

Haplogroups don't speak languages nor practice any culture. What we can say is if a certain haplogroup or clade of haplogroup is strongly linked to a certain population or culture of antiquity and was diffused together with the expansion of the former. Of course the haplogroup remains (unless the lineages die out entirely) long after the language and the culture have changed or even have totally disappeared due to acculturation enacted by another population (e.g. Turkic arriving in medieval Anatolia, Hungarian arriving in medieval Pannonia).

You seem to have some trouble following the chronological order of things:

TMRCA R1a-M417 - 5400 YBP (earliest samples in Northeastern Europe; earliest samples of R1a as a whole date to the Mesolithic alsster in Northeastern Europe)
PIE language - spoken roughly between 5000 and 6500 YBP (major expansion between 5400-4600 YBP linked to spread of steppe ancestry)
CWC - 4900-4300 YBP - population of mostly steppe ancestry + some EEF
Fatyanonovo-Balanovo - eastern offshoot of CWC, 4900-4000 YBP - population of mostly CWC-like background and lots of R1a-M417 and especially Z93
Sintashta - >4200 YBP - population still mostly of steppe ancestry + some EEF and closely related to CWC

PIE changed over time and became hundreds of different languages. The culture of people speaking it diverged as much or even more so, because of admixture with others and isolation from each other. The haplogroups, though, remained the same, only developing new subclades.

What's so hard to understand, really?


The fact is that none of ancient samples from the 3rd-2nd millennium BC in India, Iran, Levant and other regions where Indo-Iranian lived is R1a-Z93, according to "The Formation of Human Populations in South and Central Asia", by Vaghees Narasimhan et al., Steppe ancestry reached South Asia after 1000 BC, about 600 years after the appearance of Indo-Iranian culture in the Levant.

Indo-Iranians lived mostly in Central Asia until the mid 2nd millennium B.C., and they may have established in at least some parts of Iran only in the 1st millennium B.C., so it's not surprising you won't find a lot of R1a-Z93 there in the 3rd-2nd millennium B.C., particularly when we know there is an almost unforgivable paucity of aDNA samples from the BA and IA Iran and South Asia until now.

Also, you need to decide what you really believe. First you say R1a-M417 and R1a-Z93 particularly are linked to Indo-Iranian peoples from Poland (sic) to India, then you now say "none of ancient samples from the 3rd-2nd millennium BC in India, Iran, Levant and other regions where Indo-Iranian lived is R1a-Z93". Contradictory statements, don't you think so?

The fact Narasimhan found steppe ancestry only in samples dating to after 1000 B.C., among very few samples from South Asia that he got, is honestly too little for us to claim confidently that there wasn't R1a nor steppe ancestry in South Asia before 1000 B.C. It's a very large and already then very populous place, and steppe ancestry must've been initially much more localized than it is now.

The Levantine samples from MBA clearly had links with a population movement of Central Asian origins, totally coherent with the way most scientists now assume that PIE and steppe ancestry arrived there: Eastern Europe > North-Central Asia > South-Central Asia > Iran/Transcaucasia > Levant.

Ygorcs
07-07-20, 21:45
In the ancient times Central Asians couldn't fly over Iran to reach the Levant, anyway it is not important because this haplogroup is R1a-M417, not a subclade of R1a-Z93, and Central Asia is not in the Europe but Greater Iran:

Are you telling us you don't know Z93 is nothing but a subclade of M417? :confused2::thinking:
Are you also willingly ignoring all the aDNA studies demonstrating a massive genetic turnover in BA North-Central Asia coming from EASTERN EUROPE followed by an appearance of heavy steppe admixture in South-Central Asia not much later? Your ethnic pride and ideology are making you blind.

ratchet_fan
08-07-20, 00:06
In the ancient times Central Asians couldn't fly over Iran to reach the Levant, anyway it is not important because this haplogroup is R1a-M417, not a subclade of R1a-Z93, and Central Asia is not in the Europe but Greater Iran:

https://upload.wikimedia.org/wikipedia/commons/4/45/Greater_Iran_Map.png

R1a-Z93 in Greater Iran (even the parts in Central Asia) is intrusive from the Kazakh steppe and ultimately the Pontic steppes.

ratchet_fan
08-07-20, 00:09
Also the Levantine R1a guy is likely an Indo-Aryan not Iranian anyways. There's also theories that the first Indo-Iranians to inhabit the Iranian plateau were Indo-Aryans based on place names.

walker89
08-07-20, 03:54
Shahmiri: To be honest, 2 of the 3 components in Fatyanovo are southern in origin: CHG and Levantive. And we know that R1a1 is not original in WHG. R1a1 is obviously seeping through into the north along with these southern components, getting fixated for short periods but eventually being replaced by new waves. z93 in particular is an ephemeral phenomenon in the North and it tends to be a marker for turkic, scythic, or jewish origins; that is, for foreign origin. it is an odd dynamic but there are no real indications for the in situ genesis of R1a1 in the Northern Steppe. Much of it seems derived from elsewhere. Northern MtDNA U4, U5, and U2 are also very much derivative of the more prolific N and R lines in the South. The european steppe peoples are also very much Siberian in their basic genetics as well as culture and ethos similar to the Uralics, Mongols, Hunnics, and others who have moved freely through that territory for ages.

Shahmiri
08-07-20, 06:19
Also, you need to decide what you really believe. First you say R1a-M417 and R1a-Z93 particularly are linked to Indo-Iranian peoples from Poland (sic) to India, then you now say "none of ancient samples from the 3rd-2nd millennium BC in India, Iran, Levant and other regions where Indo-Iranian lived is R1a-Z93". Contradictory statements, don't you think so?

No, because I believe Iran is the source, not the destination. It is actually what geneticists believe: https://en.wikipedia.org/wiki/Haplogroup_R1a

https://upload.wikimedia.org/wikipedia/commons/thumb/c/c4/R1a_origins_%28Underhill_2010%29_and_R1a1a_oldest_ expansion_and_highest_frequency_%282014%29.jpg/1024px-R1a_origins_%28Underhill_2010%29_and_R1a1a_oldest_ expansion_and_highest_frequency_%282014%29.jpg

According to "Ancient Migratory Events in the Middle East: New Clues from the Y-Chromosome Variation of Modern Iranians", by Grugni, et al.: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399854/


All the R1a Y chromosomes belong to the M198* paragroup with frequencies ranging from 0% to 25%. Indeed neither the “European” M458 nor the “Pakistani” M434 have been observed in our samples.

R1a-M417 is a subclade of R1a-M198, isn't it? Based on your chronology, would you please explain why all the R1a Y chromosomes in Iran belong to the M198* paragroup? Ok, R1a-M417 came from Central Asia, what about this chronological order:

Iran (M198) > Central Asia (M417) > Levant (M417)
Iran (M198) > Central Asia (M417) > Eastern Europe (M417/Z93) > Pakistan (M434)

Ygorcs
08-07-20, 07:02
No, because I believe Iran is the source, not the destination. It is actually what geneticists believe: https://en.wikipedia.org/wiki/Haplogroup_R1a

https://upload.wikimedia.org/wikipedia/commons/thumb/c/c4/R1a_origins_%28Underhill_2010%29_and_R1a1a_oldest_ expansion_and_highest_frequency_%282014%29.jpg/1024px-R1a_origins_%28Underhill_2010%29_and_R1a1a_oldest_ expansion_and_highest_frequency_%282014%29.jpg

According to "Ancient Migratory Events in the Middle East: New Clues from the Y-Chromosome Variation of Modern Iranians", by Grugni, et al.: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399854/

R1a-M417 is a subclade of R1a-M198, isn't it? Based on your chronology, would you please explain why all the R1a Y chromosomes in Iran belong to the M198* paragroup? Ok, R1a-M417 came from Central Asia, what about this chronological order:

Iran (M198) > Central Asia (M417) > Levant (M417)
Iran (M198) > Central Asia (M417) > Eastern Europe (M417/Z93) > Pakistan (M434)

Underhill 2014 and Grugni 2012 again? Do you have any other genetic evidence, preferably more updated and with more specific information on haplogroups? You've been here for many months repeating ad nauseam Underhill 2014 and Grugni 2012. Is that all?

Also, I'm afraid you're still misinterpreting what the results of Grugni et al. regarding R1a in Iran really mean. The authors' phrasing was really poor and misleading, indeed. As far as I can see, they tested the samples for R1a-M458 and R1a-M434. If not present those clades, they assigned the sample to the upstream clade R1a-M198. They didn't get more specific than that: M434, M458 or "the rest" of M198, with all its many clades besides M434 and M458. There is nothing basal (M198*) about that, it's simply residual (M198xM458,M434). That is made clear by their picture about the haplogroups they tested, in which they distinguish only M198 generically, M458 or M434 more specifically, and nothing else:

https://www.eupedia.com/forum/image/png;base64,iVBORw0KGgoAAAANSUhEUgAAApEAAAFcCAYAAAC QteU8AAAgAElEQVR4Aeydd1RUd97//Wf3d559suum7LPZjdGosSsgFjqiIooFVBB7izHGbtSYxF6ixpZ oLFETe wVFRuCgg1EBUR67723Gaa8f4c2DohS7jAF3pxzz9z2 ZbX53svr7n3zkwL8I8ESIAESIAESIAESIAE6kmgRT335 4kQAIkQAIkQAIkQAIkAEokBwEJkAAJkAAJkAAJkEC9CVAi642M ASRAAiRAAiRAAiRAApRIjgESIAESIAESIAESIIF6E6BE1hsZA0 iABEiABEiABEiABCiRHAMkQAIkQAIkQAIkQAL1JkCJrDcyBpAA CZAACZAACZAACVAiOQZIgARIgARIgARIgATqTYASWW9kDCABEi ABEiABEiABEqBEcgyQAAmQAAmQAAmQAAnUmwAlst7IGEACJEAC JEACJEACJNDC1NQU6pzi4uJInQRIgARIgARIgARIQMcJtGjRog XUOYWGhuo4MjafBEiABEiABEiABEiAEskxQAIkQAIkQAIkQAIk UG8CLR49eoTGnj799FPF1U5eiax3jhhAAiRAAiRAAiRAAlpHQC 0frOnYsSMlUutSzwaRAAmQAAmQAAmQQMMJUCIbzo6RJEACJEAC JEACJNBsCVAim23q2XESIAESIAESIAESaDgBSmTD2TGSBEiABE iABEiABJotAUpks009O04CJEACJEACJEACDSdAiWw4O0aSAAmQ AAmQAAmQQLMlQIlstqlnx0mABEiABEiABEig4QQokQ1nx0gSIA ESIAESIAESaLYEKJHNNvXsOAmQAAmQAAmQAAk0nAAlsuHsGEkC JEACJEACJEACzZYAJbLZpp4dJwESIAESIAESIIGGE9CgRMqQEe iO65fO45JnOHKLJW/0QpL4HLevXsIljwBEh0UgMiIc4eFVp4jIJOSIJZBViS5GjPct3 PNPRL6o6pYqu3GBBEiABEiABEiABEigQQQ0KJEleL5rHMz1O6L jwJW4HZMFkVy5DyUI G0KLHt2ht7U7zF/UD Y9zKEoWHVqZf5ApyOSEehUmxx0FHMsTHCiLV3EZslhtIm5Qo4T wIkQAIkQAIkQAIk0EACGpRIMR6vscRnn7yPv/ jD364FY0ssVIvSgKxe7QeWrX8C1oOXYszvx/DqePHcezYsbLp6K65sPrsX hg/zM8E3JRUhlaHIzjX5vhs5b/g25znRGRLqJEVrLhKwmQAAmQAAmQAAmoiIDGJbJtz/6w Pw/GLD2LmKyX1ukJGgfHI0Ho1 3f Dfo3YiKCoVhYWF5VN NK6ttEWP3hPwi1sYssSyClEUIeTkXNjYDINF2/fRayElUkXjhMWQAAmQAAmQAAmQQBUCGpfIdiazsHKyAToM/RH3YrMrrihKEPKbE4ydVmJB///iM4dfEZGUV9FwOfJ9dmGsoQFG/ SK8Cyx4nlIUdgpzLMZjK/3HcB887Yw/eYqr0RWSTcXSIAESIAESIAESEA1BDQvkaaLcOrw1zDpZoefPOO QU3pfWhKGg NM4LT9CjbafY72jkoSKY3FuTkm6Np/MS4GpKJYWgFCHI4zC21gPfM3PAjzxKbBHWBOiVTNKGEpJEACJE ACJEACJFCNgBZI5De4 uIcvrHogdHbHyE VwJJ B YYDIG2z19sHtcpyoSKX65Bw7du2H0Dk/E5JZU3MYuQcS5RbAZ AV2e0Qip8AX22wpkdVyzUUSIAESIAESIAESUBkBrZDIaxHhuLb UHHpjfoFXQjZCD0 CyZhteBAdisOTOitJZDF8tg5FJ/1JOPg8EQUVVyFLoi5gsc0ATN15DxHZYshK/CiRKhsiLIgESIAESIAESIAE3iSgHRIZmY7kG4thpj8Ou70fYc8 kEzhs8URsZjyOT1aSSIkfdgzvBP0ph CXXFDxLKQU0cenQf Tf6ONngks w/EwAFG6PDR3/DPNvowt18Ll9gsFPN7ft7MPteQAAmQAAmQAAmQQAMJaIlEZqA4/ToWmvTExLXLYKtvj588YpAtSq4ikdLow5jQtRNG//IcCbmVD0PKkPbkT zYuAYrV6zEypUrsXL517Dp8CHamI7DvNUn8SwtH68/991AUgwjARIgARIgARIgARJQENAaiRTJ0nBlrhH0urXFJ1brcC 8mGyWylCoSWeS6FEafWeI712hkKlmhpDAb6WmpSElJKZ8S3LFm YDsYfX0c3iGpKJJUfgWQot cIQESIAESIAESIAESEEBAeyRSLkPKxdno3epjmK24i isEsirSGQOEo5OROfPHfGrfxLy3vVrhnwmUsCQYCgJkAAJkAAJ kAAJ1E5AgxIpR26MH7x9I5BRXFL2fKMsOwovvJ7gZXwexNLShx jFSAl Cu/ABBSJJShOCsTTp0FIKhSj8mZ2jV2UFyDupTd8IzJQVPIu26wxm itJgARIgARIgARIgARqIaBBiaylZdxMAiRAAiRAAiRAAiSgtQQ okVqbGjaMBEiABEiABEiABLSXACVSe3PDlpEACZAACZAACZCA1 hJoYWVlhcae/ud//gctWrQom/r27dvo9TV2f3S9/JiYGK0dkGwYCZAACZAACZCAbhBoUSl3fC2X3ObAISgoSDdGJ1t JAiRAAiRAAiSgtQQokRVXSJuDPFb2kRKptccjG0YCJEACJEACO kOghbu7Oxp7atWqleJ29vHjxxu9vsbujy6W37p1a0UOKJE6c3y yoSRAAiRAAiSgtQT4wRqtTY1qG9alSxdKpGqRsjQSIAESIAESa NYEKJHNJP2UyGaSaHaTBEiABEiABNREgBKpJtCaroYSqekMsH4 SIAESIAESaFoEKJFNK59v7Q0l8q1ouIEESIAESIAESKABBCiRD YCmiyGUSF3MGttMAiRAAiRAAtpLgBKpvblRacsokSrFycJIgAR IgARIoNkToEQ2kyFAiWwmiWY3SYAESIAESEBNBCiRagKt6Wook ZrOAOsnARIgARIggaZFgBLZtPL51t5QIt KhhtIgARIgARIgAQaQIAS2QBouhhCidTFrLHNJEACJEACJKC9B CiR2psblbaMEqlSnCyMBEiABEiABJo9AUpkMxkClMhmkmh2kwR IgARIgATUREDlEikJu4GD5x4jIbcYsopOdOzYUfG7zaGhoWrqG qtRJvA2iZRlBMPz5lVccn6IiNwiSJSDSuclSfBzc4Gz80Pk5hW VrkB2tC88b7vg u0HCEzMg1gqV4qSoTDxJR663sDN 76IzRZBUrFZXpSBhNgoREZGICJCeYpEVFIORJLKEaNUHGdJgAR IgARIgAS0koDqJFKWjoigOKTeWQ37 cfg5 DoPgCiCRyUCI1n/u3SWSJ7x5MHtAbXbvaYPXtaGSKlIUQkAT ji t 6K74ZeIiAiEz5HvMWGwFfoPGgxrCxOY2UzBxqvByCiSlglm4r1 dmDvKGgOsB8LC1BTWE9fjclAGCqWA6MkuTLcbABMjIxhVmUww4 JszCE8rQNXaNc NLSABEiABEiABEqiZgMokUp7tiV/nToSTjQHadDOHzYChmHPAG2l5JZTImtmrde3bJFL8ZB36t/sE77/3D/T94QaiMsVK7ZIg LexMGz9T/yl5VA8O7kck02NMHzpb7h09wEe3T2N9U5G0B/0PS6HZaAw3R0/jjKB1dQtOHnjHu5d2o6pFj1h891FhKQXoSTBG85njuHQH3/gj7LpILZ/3Q f/etzDN96D3E5ynUrNYOzJEACJEACJEACWkdAZRIJcToifM5h VADtG3dBaPW/ol7welltyh5JVLzeX nRH7eE/1M2 O/1mvhGpUFhcpJQnBgvBmGWHZFy4/tcGG CXoYfYE/vGORX3qPWlaEROdFMO1ojRW3IxB2aQnMug/DqpvBSBfJIBdn4OmWkehuNBd/BqWgQCJGUWEBCgrKp7xoF6wdYYA 47bhVlAGRFVui2ueGVtAAiRAAiRAAiTwdgKqk0jIkO66Dg6OS7 B12WhYT92FB/E5KJGDVyLfzl9tW94tkaaY cNEGHQajh/dopFVUt4sSejvmGjuhB/m9kertqPhdfMqHjwJRlqhuOJ5VzlybyyBcbv OFOCG6ts0FH80W4EpqG4or70gX3VsCykzVW3IlEhsJOAcjz8Xz fJPTtORI/3ghGhojPQ6ptMLAiEiABEiABElABARVKpByihMe44xmO5Ggv3H Z7hZT8ctnglUgVZEpgEe WSDMsPPE7ZpnqYeRPHojJLrVICcIPTYK50xZc NEenTo4ICgkHnK50lOLhUE4PtMYHU0X4UJQNM7PN0Tb4T/CKzYbpU9Ilv5JgnZhZOc mHUyCCmFr2NlcZewqF93WC08A9/kQvAiZAUwvpAACZAACZCAjhBQoUSWXl0qgbhEBrlcArFYikrfo ERqfjTUKpFXfHB6UT/oO2zHw9gcSCSRODLFHGO2uMNr90R0q5BIRU9EsbizdTKMu1vg6 4OPEJuXjnOzeqD9qO14EZ j GS NPIAxnbRx7RDr5BUUCmRYrzaPx4GPUZii3sksksvV/OPBEiABEiABEhApwioViLf0nVK5FvAqHF1rRLpHIrQq0th2dMJ vzyOR1bYcUwzd8RP7hEIPjy1ikTK88NwbdNU9OtpjsmbL8MvqR ASWQGuzNNHO/steB6nJJFh DYuSdmHA1EcqVEip7jZ/tuMJiwD0/j8xRXLdWIg1WRAAmQAAmQAAkIJECJFAhQV8Jrl8hwpCa6YLG5I cbvfoKH 6bC3GEz3CLTEX9imkIi5dl OLXcCWa9B2Lm9it4Hp PElnplUQRPFdZoMOglXCPykTFY5Uo8dkImw7m OZKGNIqvj5I8nIXRnU1wMT9z5CYX3njW1dIsp0kQAIkQAIkQAK lBCiRzWQc1EUi04rScG2hKXpNWofvhvWE/SY3RGYWI XPCon098CV1Y4w7WOLhftu4WVyIUoUn4eRIv7YVOjrT8L F4nIL1svQ/yJ6dDvNha7n8Ujr8wXZYg9NhV6XUZiu1cccuiQzWQEspskQAIk QAJNjQAlsqll9C39qZNEimRIvTwPJgZ6aN qH1a7RiJTLKuQyNG4/dME2HT5HGZT12L/hdtwu 8BDw8PeHh6IzStEPmhxzC9rwGGLDmGJ3HZyAi9jnV23dFj7G48 ic t DWcIrh9b4b2lktxIzwdYj4O ZaMcTUJkAAJkAAJaDcBSqR250dlraubRMohS76AOX1b4z8m3 NWRCbE8kqJHIIVZp/gv /9DR 26YRuPfSgp1cx9bTF6htRyMhLhdeBuRhs1AcmVgNhZayHbiYT8 dONEGQWV1xylCXi NTu6OjwC57H5yo gKOyjrIgEiABEiABEiABtRCgRKoFs YreZtEynIi4fPAGyFphRCX3oKWZiL8qSc8nkcjp1hS9jOE4qQA PHrwDEEP3XHP9TZu36423fHEq6SCst/QFmdG4YXbBRza8wt 2XcCVx8GITm/5PVX MiLkPDyER6 jEO 6I1f6tY8KLaABEiABEiABEigTgQokXXCpPs7vU0iG6VnUhHyc7 KQnVdU8aGbRqmFhZIACZAACZAACWiQACVSg/DVWbVaJVKdHWNdJEACJEACJEACGiFAidQIdvVXSolUP3PWSAIk QAIkQAJNmQAlsilnV6lvyhJpZmaGwYMHcyIDjoFGGAMRERFKRx 5nSYAESKDpEqBENt3cVumZskS2aNECnMiAY6BxxoCvr2 VY48LJEACJNBUCVAim2pmq/WLEtk4wkARI9fqY4ASWe3kw0USIIEmS0AtEunp6YmbN2 WTQUFBU0WpjZ3TFkiDx48qMhHZV74Wj4 yYEcGjIG2rVrp7i6T4nU5jMh20YCJKBKAmqRSFU2mGU1jICyRA YFBTWsEEaRAAnUSMDAwIASWSMZriQBEmjKBCiRTTm7Sn2jRCrB 4CwJqJgAJVLFQFkcCZCAThCgROpEmoQ3khIpnCFLIIG3EaBEvo 0M15MACTRlApTIppxdpb5RIpVgcJYEVEyAEqlioCyOBEhAJwhQ InUiTcIbSYkUzpAlkMDbCFAi30aG60mABJoyAUpkU86uUt8okU owOEsCKiZAiVQxUBZHAiSgEwQokTqRJuGNpEQKZ8gSSOBtBCiR byPD9SRAAk2ZACWysbIry0TIg9u47nwdjyPzUCypXpEEyf7uuH mtdHuuYrso/gUevkxAvkhaJUCSHQO/h664efMuHgUlIV8shbzKHlUXiuOew/3BKyTliyEDQImsyodLJKBKAjVKpCwLYY9d4eJ8HY/Cs1FYUr1GKVICPHD7 rVq28VI9HuMgPgcFFWcN RFmUiMj0FUVFQNUzSSc0SQyICSrGj4PnDF7buPEJiYC5H0XWeJ 6u3hMgmQAAnUjwAlsn686r53iS/2TrWGUQ89DF3nipgsUVXpkwThj69sYKzfB7OOhyK1oPRkL8eZZ eMxcsUVRKYXKfbPeHYcK6YMg7X1ENjaWMGi3zDM2OKCkMwiVFX NiuYVh LUYnv0c/gRd2OyIJZTIuueOO5JAvUnUKNElvjj4ExbmOrpwXaVC8LSihXH dFkNkhAcmzcc5gZ98OWhl0jILX27J0dh2HksH uA5eeDkFx2XgDEPr9hjpMtLM3NYV59srTBktNBCH54Guu sMMgaxsMtu6P/sOm48dLAUgteOMdbP07yAgSIAESqIEAJbIGKCpZJX6MtVZt8ck/30NL4xW4FZ0JsVLBkuDfMLbnp2j5l5YYttMfiXlSZL 6hIHdP0XrCUcQlFyg Ifz2zRrGA1bjD3nbsH9/k0cX 2AvgaDscI5ApnF1a80iBB2ZhEGtH8ff s2B5fD01C6C69EKsHnLAmomECNEin2xqYhndH6/ffQsu8yOIeUH4uVVUtC/8AUo7Z4/68tMWSrN6KzJcgJcsbmqWZo 0FrjN3/AnF55ce3NMELl08exv7ffsNvldO n/CVVXv8u/0QbHC ip /GAAT23nYcfI67t69gG3T qGP7Q 4FJyKouqnicpG8JUESIAEBBCgRAqA987QMolsDwNLE7T7ZBDW3 41BlsIiJQg9OB6mNhbo8o9/Y ROH9w/uRmzhluhf4e/o91kZYmUwLG3Lab/7o3YfAnkkKEo/hIWGHeA9co7iMpUFAqIwiEKO4ElwwbD1vQzvN9rAa5QIt ZJm4kAVUQeLtEdkEvCyO0azUIq11CkS6qtDkpwg5PhZWtBbr88 z w3/YArie3Yd7IARg4zAIdP2qPCUoSCakYRQX5yM vnHIRc2sjHPv0xZgfneH78io2TB6HxYceIyq7BDK5GCkXF8Cky 3CsuxuOjDdupaui1yyDBEiguROgRDbWCKiQSNMvv8cE/U4YsekeYrIrzuSSMPwx0QyO38 B1X8/g8Ouhziz5Tus2nEMK2zaovt0ZYmUwfu N16lFkBcerer9IZX7k0sNm6H/j 4Iiqz8r DCJEXluLUV8YY8uVO7JlrjramiyiRjZVflksCSgTeLpFdYT59C cYZdoPd lsISxeX32GQRuDo9P5wWjYL/dt8jtHb3HBy6wqs3XEY169thENXfUw98PpKpFJVgLwA8oIX H2GOXrbrcZl/1QUFqQi4uUrRKUXlp8npFl4vnMs9HqMxc4n0cip8bmXKqVygQR IgATqTYASWW9kdQyokEizhSdwcKYJ9EZthWdsDkqfTpJEHMYks zH46cKPsOvwORx3PcfLgDDEpefjwHg96FWRyFJrlCtubQOFCP5 zFkw6mmLh SCkFZWbpTjqEpYNt4Fx74nY5RYEj01D0MmcElnHbHE3EhBE4F0 SaTHvEPZ9ZYleozbCNTyj7LEWadRxzBgwFhtPrceo7p3hsO0Rn r8MR1x6Hopij2F6T0NMe4tEyhKuIuHCTNgYWGHOMW/El92hqGy GMHXdmHNHAdYGRrDYfU5 KYUlJ13KvfgKwmQAAmoigAlUlUkq5dTKZGLruDpqYWw0HfEz4/ikCuRIPLoFJg5boG7968Y36VUIkufiSyXwcMT9d USEXZIsTd3YFppj1g/tV PIzNRUlpWEk0rnw/HIOm7sC4Pc8QmpUP3 1DKZEKbpwhgcYl8G6JPIuHfy6BdZ8x2OIegcwSCaL/nIkBTptw88GvmNqzCxy2lT4TWX4OkCUcxxdvlUgxgg9Pw56h/4WB3QbcDMmA4g55aRflOXhyZA0WTRoE/TatoDdyLa4EpqHivWbjQmDpJEACzY4AJbKxUq6QSGeEhVzBYou eGLvLCwnZ4Tgx3RwOm 8hMvgwpnSto0TKCxDusgVf9O8F84k/4sKLRBSUGyRirv6AEdaTsPVWMLzTSyCSlsCfEtlYmWW5JPAGgX dL5DkEBDrje u GLvdA1EZ4Tg1awCcNt5CUOBRfFkfiRT5YY TASw/ hRjdz5AVE7pc9LKfyXITohEWOALeJ78FsN69sKYLe5Vn51W3p3 zJEACJCCAACVSALx3hipJZERqAq4tMoPhhL3wfrwf08xHY5N7F DLij9dNIuXZ8D 9CuMs mDAjC246BOHvBJZ T8PWSxOfdkLn/73c/QZaIuhdvawsx B/t0/xt8//BxGg8Zh8 04fNy2M1q0aFE2BQUFvbPp3EgCJFA/ArVJZGBiPG4sGwCjCTvh4bkfXw0cgw03Q5ASdwoz6yGRksB9GG tgiA9bOWH345jXzzpKCpGZlIocUYnia79ked7YYtcVepP340Vc XjXZrF//uDcJkAAJ1ESAElkTFVWsU5bI9CKkOs HSe8p2LB8BHrabcTdqCwUJ5 ok0RGXl0HJ7O GDJ/N1z8kiquQFY0UpaKh0c2Y/V3S7Fk6VIsLZuWYPqA9vjg074YPfM7HPFKwSftKZGqSCvLIIGa CNQqkUmFSLu BFbGk7Fm2Qj0HbUeN4LTUJRyuh4SKUP8yZno3d0eH9rsgUdkpu JZR7HfEXwzaTZ dotGRuX9bZEPtgzvip7T/oBvfD4lsqbEcR0JkIAgApRIQfjeEVxFIkWQplzEHKOeMOjwKSx XuSIyUwxZSl0kUobvhxvhc9MpWHPgIu7c88SDBw/w4MFD ISlo0gsRn5GMpIS4hEfXzlFw3X1QLTvOxOHS3 1pkCCjp278ErkO9LFTSQghEDtElkEaeoVLLLsg54dPoXF8usIT hVBmlofiSzG/VUD0MlyEfSWeSEo5fWXl8viL2GhZXcYT9oGl8AMFOQn4unxbzC way9M3vcYsbn8wnEh WUsCZBAzQQokTVzEb62mkTKpUk493UffPqxMb67FYFMsbxuEim LgXGX9vjbv9qhm15PGBoaVkx9MGLdLURnVvslnLKW85lI4QlkC SRQdwJ1kUi5LBmXFpij3X NsNg5CKnFcsjqI5GyJJz80hBdRm F7YEERGWVfxCnrJWSDPidXg5HSyOY9h CobYDYNLLCEPn74N7WBaK RU/dU8m9yQBEqgzAUpknVHVc0dZFkIfu PRqxQUlH3BoxQZwY/gdtcbEdnFkMgBuSgBvvfd8Szq9W9nx73wgIdf/Ovfzpbn4f49N1y/dg3XqkzX4eaX Hq/Ks2TITfSG/ceBSKlgL dXQUNF0igEQjUKJGybIR738ejgCTkiUotTorM0Cdwd/NCeGYhSko/ESNOhL/nPTyLLP1t7fKPyMiL4 Hn6Qm/2Ne/nV3WZHkR4nw9cP95FHzixYrf1a7sjiQ3Di89nXFs7w5s3fYrDl 9wxdOIDBSVfQCvci kgAJkIDqCFAiVcdSq0vizx5qdXrYOB0nUKNEaqJPshIU5mYhMz MXhSVSPgepiRywThJoRgQokc0k2ZTIZpJodlMjBLRGIjXSe1ZK AiTQXAlQIptJ5imRzSTR7KZGCFAiNYKdlZIACWiYACVSwwlQV/WUSHWRZj3NkQAlsjlmnX0mARKgRDaTMUCJbCaJZjc1QoASqRHs rJQESEDDBCiRGk6AuqqnRKqLNOtpjgQokc0x6 wzCZAAJbKZjAFKZDNJNLupEQKUSI1gZ6UkQAIaJkCJ1HAC1FU9 JVJdpFlPcyRAiWyOWWefSYAEKJECx8Ds2bNhZ2en9dN7773Hnz 0UmGuGq4fAggULtP54qn7Mt2zZUnF89evXT faX70/XNbsOT0sLEw9BxtrIQGBBNQikaWiZW9vXzYlJiYKbLJ2hXfu3F nxz6NFixY6MR8UFKRdENkaElAioK vrxPHka4c72ynbpyXlfP09OlTpSOCsySgvQTUIpEdO3ZU/FMIDQ3VXhoNaBklsgHQGEIC7yBAidQ96VEWIM4Lzx8l8h0nCG7 SKgKUSIHpUJbIvXv34sqVK1o5tWrVSiHyvBIpMOkMb1QC9 7d08pj6F3Hdtu2bRXH1y //KJz7X9X37it8c/pHTp0UIyf7du3Izs7u1GPMRZOAqoiQIkUSFJZIoODgwWW1njh/GBN47FlySTAD9ZwDAgh0KdPH4VE8iqkEJKMVTcBSqRA4pRIgQA ZTgJNgAAlsgkkUYNdoERqED6rFkSAEikIH0CJFAiQ4STQBAhQI ptAEjXYBUqkBuGzakEEKJGC8FEiBeJjOAk0CQKUyCaRRo11ghK pMfSsWCABSqRAgLwSKRAgw0mgCRCgRDaBJGqwC5RIDcJn1YIIU CIF4eOVSIH4GE4CTYIAJbJJpFFjnaBEagw9KxZIgBIpECCvRAo EyHASaAIEKJFNIIka7AIlUoPwWbUgApRIQfh4JVIgPoaTQJMgQ IlsEmnUWCcokRpDz4oFEqBECgTIK5ECATKcBJoAAUpkE0iiBrt AidQgfFYtiAAlUhA XokUiI/hJNAkCFAim0QaNdYJSqTG0LNigQQokQIB8kqkQIAMJ4EmQIAS2 QSSqMEuUCI1CJ9VCyJAiRSEj1ciBeJjuLYSkGQiwusGzvyxBzt 37saBE854EJKKwhJZeYvleYjyccdtl6u4erV8unbtGlxu3oHH0 xAk54mQHekD9z1RpmgAACAASURBVDt38Tw2F8WS6h2VISPkMdz uPEJweiHE8qrbxYkv4RWYgNwqgRLkpyciLiYa0dGVUwzi0/NRIq0oQJKNGL9HcL97D17BycgTS1G1aAly417B654r7rg/QXBSHsSVsVWbUK8lSmS9cHHnagQokdWAcFFnCFAiBaaKVyIFAm S49hEojoDL1jkYPWgAbIbaY9Roe9gOsIDlkMlYe8EfqQUSQBqO k4vs0d/UGOYWlrC0tES/fpawMDOGsVl/2H/9M67c2IcFo20wculp CcXQKrUU1nGQ yaORwjZh/Ao9gclCiZnrwoHJdWTcDYVZcQmlL4WgIlwTj5/RSMGjwQAwdWToMwbuMtRKUXQ5bzEhc2zoLD0CEYOmwIbAaPxqy t1xCUXlhetywLfmd/xNeOQ2E7fASGDhqAQaO xvbrwUgvVG6dUkPrOEuJrCMo7lYjAUpkjVi4UgcIUCIFJokSKR Agw7WMgAzpruth39cMY1cdxMU7D/D48UPcv3kMK0b2hp71d7gQnIaiklfYNaoz2vefjd3HLuC6iwtc XFxw/do5HFg1Bn069MCIFQfx6ywrdOkyEN ee4XUwsqrmLl49ts0mHTrh7mHHyMur0QhirLcYFzfNgMW7T5Am 3EH4Refr9gmz7yM UYGsJ76PdZv3YmdO0unX3HoZiAy8vMRdHwurE2HYPbWo7h0wwU nN06ERZ8RWH01DEnFchT5H8bXA81gO3crjl6 idtXDmGFgwl6D1uByyFpKFIS2fomhRJZX2LcX5kAJVKZBud1iQ AlUmC2KJECATJcywiU4MX24ejSewoOPI1DXuUFOlkR4i6vwCib 6dj5IBbZxQFlEtll7G74xucqRA QojDJDWsGf462dltx1/UgFlh1Qvehq3EtNAPFMjkKAo5htmUPWMw6gAcxuYqrkOLIW9i1 yBGDrIfCrMOHaD xqkSWvNiGET2G4HtnP0Rl5CI3t3zKLyqBTJoC140TMWbR73gUl Y0SmRyipLOY07czhv94Hz4ZxQg4OBG9jCdjt0cEckpvy0sLEXd pESy62GDFjTCkVb nXo/MUCLrAYu7vkGAEvkGEq7QEQKUSIGJokQKBMhwLSMgRcShSdDvb IqpW8/hSUwORBXPDMqyo Dr/QLhaYUQl7xNIgF5rifWDPocbe13wCc6Fv7Hv4ZZJ304bnVHdEo gzi22hoHZDOy9H4kcccXVSQD5jw5gxcqfcPDKZWwY1Rl6U5UlU obUc7PR13gGdl69gTt3buL2fV/EZBVDUnoFUV6ElNAX8AtPRUFZmVJkvdgFp 7dMHaXNwJzSpAR gi33X2RmFtccWtdjrw738Oy4wAscwlBqrjhqaBENpwdIwFKJEe BrhKgRArMHCVSIECGaxkBOYqjb2LzRHPo9egFM5tRmDznO2zcf QI3fKKRLZKUX3WUVtzO7jcT2/Yfx7nz53H /FmcPn4APy2yg0E7fYzb5YnYnBJIMp5h/7Q 6GzyJX7a/BX69zTD1F/dEJ4txmuFBErSoxAanYrcolgcnaaPntOUJbIETzfbolP7rjCxH g4HB3sMHjAQI2ZsxOWXaSh9TLPyTxxyA3s3LMR46z4wHrUSZ1 kIK9iu1ymdM 6KAznFlqhq8kc/OmXhALlxlQWVsdXSmQdQXG3GglQImvEwpU6QIASKTBJlEiBABm ufQRkBUgMuI8L 9ZhwWR7WJsaoluXbjA0H4YZm53xKr0QEkm5RH7yaSf0MbGAlaU p hj0QLfufdF/xEQs2nYOXjG5EJXeDpeLkfLoZ4zr1RVd232CHuN34E5oFkRvkz ZZAo5Vl0h5Dtw3j4PN8C w7sB53HB1xbWjqzHGpCcGLjwB3 R8xdXF3MeHsHL eAzo0Rqf9nTExushiC UVRFWiBLgsXc2 vc0x/SddxGeJaq6vZ5ZoUTWExh3r0KAElkFBxd0iAAlUmCyKJECATJc SwnIIM5NRWyoP5563sXVk7/ih3Em6Ny1P5acDUJq3suyZyI/7z8He45fxI0bV3F653wM6twaXW2X4/zLFBQqfXWOXBSPS4vM0aaVBZZcfonU4sqHLWvofo0SKUZa2HN4 Pw9DSr4YpUXLihJxZ6UNOht8gUP icgvu8gohzgzFqGBfvC ewSLBhugz/ifsetZJrJLyuuSF0bBdddc2BqZY yqP/EkJg9Kd9VraFDtqyiRtTPiHm8nQIl8Oxtu0W4ClEiB aFECgTIcO0iIAnGpc3fYdMpPyTnvr5HLBPnIsn/EGb0ao9 y64jIvl5tQ/WyFGSE437v0yEUXcjjN1yB5FZIqUP3JTAd/twdO4yDntexCFX6a7yGwBqkkgAMkkRiktkeH1HWobkP7 AfvsR2PQkHAnpyUjLFUNSeYVTlosnG4ehU4 pGH80Ggn5cshzA3Fp03RYGw/AlPUn8TAyW/HM5xvtqMcKSmQ9YHHXNwhQIt9AwhU6QoASKTBRlEiBABmuXQQk ofh9kiH0hq6BS0hGlVvOstRLmGfUAQN uI3IlBfVJLK0G3KIkx9gu5M 2hs4Ycf9GGQrPvFcAv f7dC523js9Y1HXn0lssQffy6fhW/3P0JcVuUnYER4uXMUuvaYhP3eLtizZBoW7PZArNJ2n5 GorPBNEw8EY2EzGjc2jINA01sMGvbRTyNzVXJF42X9pwSqV3DW NdaQ4nUtYyxvZUEKJGVJBr4SolsIDiGaScBeRFCzy7CAD0DDJy 4DD8fu4I79 7D1fk4ts0fAr3uw7D2eigyCspvZ7/xFT/yYiTcWYvhXdqj9/QD8ErIQ/n1TIESKY3Gqa M0dXsC y6E4LMwnwk pzA4kHd0HvKfjyJfoXTc83QzXQafrldvj3p2Uksse4Kw0n7cPB lJoKursFIg04wHr8cey 4wuPhYzx /BiPnzxHeOmv5lRewWxAZiiRDYDGEAUBSqQCBWd0jAAlUmDCKJE CATJc6whIskLh vtyTLUbCAtTE5iYmMLMoh8GDJ2IZb/dQVB6keKDNW9IZOn1yIIIXFo6AB06WGDBST kFJQ /yhQIlGCFK8/sMjODCaWg2E/eiSGWPaB0dB52OsejmyRCGnPjmPZKAuY9BtStt3Wsi Mbedg990wxBdE4/RsE7Ru R7 r4MeDPsaw9i4YjIdhXU3IpBe/K7Lo 9OEyXy3Xy49d0EKJHv5sOt2kuAEikwN5RIgQAZroUE5BDnxCPo mSfuuDjj8qVLuHztJty9AhCXXVz zKE8F GPb O2VwSyiyo saLoiQw5EU9w 5oLHoSmo7DsNw1lyAl7hFu3vRGRXVRxdVIRUHVGXoQYH1fc9Yl CTtHr5zLl4kxE NzBmQM/Y/OPG7H9t1NweRyG9NIvGy V15JsRD /i3PVtqcVlkAmz0XEk9u4dukCzpd9HVHpVxJVTBdu4GlMDpSqqt qeOixRIusAibu8lQAl8q1ouEHLCVAiBSaIEikQIMNJoF4EZBAX ZCMjPQPZBWJI37gFXdv2elVW550pkXVGxR1rIECJrAEKV kEAUqkwDRRIgUCZDgJNAEClMgmkEQNdoESqUH4rFoQAUqkIHwA JVIgQIaTQBMgQIlsAknUYBcokRqEz6oFEaBECsJHiRSIj EaJLBkyRKMGTOmbIqJidFgS3S/akqk7udQkz2gRGqSPusWQoASKYQeKJEC8TFcgwT09PTQokWLsm nQoEEKoawUS02/6pLYUiI1OJCbQNWUyCaQxGbaBUqkwMTzdrZAgAzXGAFliayUSW 169fPz0xib lZMiawvMe6vTIASqUyD87pEgBIpMFuUSIEAGa4xApRI1aGnRKq OZXMsiRLZHLPeNPqsFom8ceMGzp49Wzbl5eU1DXIVvdAVibx58 6YiB7m5uU0qB xMwwgoS S2bdsU46PyWNXEa5s2bRS32HXpSuTt27cV/LKzsxuWEEY1WwKUyGabep3vuFokUucpvaMDuiKR7 gCNzVTAsoS6e/vrxUU9PX1dVIitQIeG6GzBCiROpu6Zt9wSqTAIUCJFAiQ4RojQ InUGHpWTAJVCFAiq Dggg4RoEQKTBYlUiBAhmuMACVSY hZMQlUIUCJrIKDCzpEgBIpMFmUSIEAGa4xApRIjaFnxSRQhQAl sgoOLugQAUqkwGRRIgUCZLjGCFAiNYaeFZNAFQKUyCo4uKBDBC iRApNFiRQIkOEaI0CJ1Bh6VkwCVQhQIqvg4IIOEaBECkwWJVIg QIZrjAAlUmPoWTEJVCFAiayCgws6RIASKTBZlEiBABmuMQKUSI 2hZ8UkUIUAJbIKDi7oEAFKpMBkUSIFAmS4xghQIjWGnhWTQBUC lMgqOLigQwQokQKTRYkUCJDhGiNAidQYelZMAlUIUCKr4OCCDh GgRApMFiVSIECGa4wAJVJj6FkxCVQhQImsgoMLOkSAEikwWTop kdJo3Dt1Hc S8iCSCQTAcJ0loFGJlMbA46wLfBJyUKQ0BnXjZw liPE8CxefeOQoN15nR0ITbbgsG5E Hrh76w6eRuagsKR6P6VIC36Ce66l27PLtkty4hDg5QEP17vweB qC5DwxpPLqcQBESXj12BvBSXkolr7eXhl/z8MbIaXn1xqDX 9fOUeJrCTBV10jQIkUmDHdkkgZMmPCkZjuhg1jvsFx3wD4hidB JJYIpMBwXSSgGYmUISs2Aolpbtg0YQmO fjhRXgSikXl/ G1XSJlWbGISEyD 6YJWHr0KXxfRCCpQISSmkRDFwdFU2qz5BWOzB NgUZ9MXLDTYSlFaNKmiThOP3tGAwyMcfsI/4IfHIZ2xdMgP1wO9jajcSwocMxdt4OXA9MQ4GSKAIiRDmvw5Th E7HxZhjSiktLlSM30Bk7FpbH2w0biuFj52LHtUCkFdR fqVENqWB17z6QokUmG dkkh5Dp4c/A5zZo2GcXtD2DiOwthvjyAhNU8gBYbrIgGNSKQ8F16HVmD LAeYdOgFm9Ej4bT0EGKTcsoQardEypHrdQgr5n8NB5MO6GUzGv ZOS3HIKwE5b1zl0sUR0cTaLH6KzUO7ovU//xf/NPkeV4NTIVKySEnEMcwwa48P/toSg388ho3Th8Bi8JfYsP80zl1zweWj6zDB0hj2q50RklqkEFB x9DWsse B//t7V8w85Y EQjkgDsXpxcPK4tfvP43Ll49i3cR MLZfjSvBqShSqrcmypTImqhwnS4QoEQKzJJuSaQISS/dcOgbG h/9ik6D12MPc7PkVsoFkiB4bpIQDMSKUJywD0cWWoLw3at0WnIIu y69BTZBaIyhNoukaLkANw7uhRDDdujdachWLjrEp7G50NU5UqV Lo6GJtjmMonsBkOTXvis9WCsdQlBmsIipYg8MRMDh5ii0z8/xojlm/CVnSPm77uPsEwxStMpFyXi3DwTdBuxHnfD0lH2PkEcg trx2LEECO0 dAQsyskUpbmhp mOGH 3nsIzRRDJhch8dx8mHYbgXWuoUiv5U0GJbIJjr9m0iVKpMBE65 REApBlemL7ZCfMXzMP9raz8NujeOTyXpzAUaCb4RqRyNIxmPUQ v0wfj/mr5mLksFnY6xGNbHH5pRrtlsiyxuPhL9Mxfv4qzB05DLP2eCA6 S6y4SqWbI6GJtrpMIrvDfOoCOPbUw8gfbyE0vSJX0micnGWNMY u/hFWbDhi14TKu33mK4OTXbwik2f7YO7EneozZgYdR2ZBCjNgb6z BuxDRs3PY1rDpbYN7p8iuR8qIkBPs8e/2MpDQb/nsnoWePMdj IBJZtbzJoEQ20THYDLpFiRSYZF2TSHlRJO5evAH/6CDcPX8F3rHZVR4MF4iD4TpEQFMSKS Kgvvlm/CLCoTbRWd4R2eiqOKfrNZLpLwIUe6XcdMvEoFuF HsFY3MysbrUO6bRVMrJNJizn7smmGJvo6b4RqWUXZFURpzGrMH OWHdsbUY1aMrHLY8RmRW6Se8xAi78zucty3HsmlDYWJij 9OeCMxrwTiuFv4cdwwTNnkjGduWzBKv59CIl/zFCPM9Q9sWzYNw0xMYL/sBLwT82p9ZpYS Zog53SLACVSYL50TSJLHwAXiUSQyWUQF4sgldfysI5APgzXXgK akkjFGJTJIBaJIJHJFFfytF4iy25ziiCSySATiyCSyCDjIaSdg 7xSIueexv2jizDIeCy2uYcjs0SC2LNzMWjMely9/yum9VKSSHkunhxZjV2zJ2J8/x5o07oXnDZeQ3ByGG5uHI9hkzbgkm8Kcvx haNBDRJZ szv0dVYML4/erRpDcMxG3EtKL3KNxDUBIsSWRMVrtMFApRIgVnSPYkU2GGGNx kCmpPItyPUBYl8e u5RasIKCTyDPz8L2GZtQkm/HwfkRlROD/fBo7rriEg4Ci 6q0skWJkRAchzO85nj 8hd8XDIah0QSs2fg1hg8ej7UXniO5QIKSgLdJZHn8y cPcev3BRhiaIQJO 4hKuvdz51TIrVq5LAx9SBAiawHrJp2pUTWRIXrdIEAJVIXssQ2 NpiAkkS jI/FtW8HwnTyLng8OIS5Ng5Ye/UVkmJPY1apRG5yw7PgVOSKJGUfqimvU4acx5swomsPWBj8Gx 16gLz4Y4YP3kKJtn1RZsPPkZnCztM334bkckZyEpJR66oRBEvy 3mCzXbdYDBlP57F5iquttfUH0pkTVS4ThcIUCIFZokSKRAgwzV GgBKpMfSsWB0ElCUysQApVxejv9k0rP9hNExGroHzq2QUppwpk 8iR877BhPGLsed NDIUn AGRM 3w76bPmwcJuDLOXMwd 7csmnORCt0 FcrGAyZUPaJ7nCPw1g5awn23I96HS96ju0je6DnlAN4FptHiVR HzlmH2glQIgUip0QKBMhwjRGgRGoMPStWB4EqElkEadIlLLQyQ d8ubWC 7DICkosgTS2XyFFLv8Uw/R4wn/4LbgVnIr1EioJkX5z7YSh6GI7DVudHCIiIQlRU RR2ex2GdjXGtF9v4mlMDooiz2F P32YT/sZN4MyUFiQDN9zP2CoXi M3 mByOx3f8cPr0SqY0CwjsYgQIkUSJUSKRAgwzVGgBKpMfSsWB0E qkmkXJqA8/Mt0P6/vTD//EskF8khq5BIh03OOLtzCUb3M8fA4Y4YNXESnOytYWoyBF/tuIHA9CLFberSpr/xTKQkFT7HvlXEj3Oyh7WpCQbP3AGXwHTFtw 8rduUyLeR4XptJ0CJFJghSqRAgAzXGAFKpMbQs2J1EJBlIPDed dx5GoPssq9hkiL1pRuuXnFDQEpe2a/XyItj4H3zGjwD05CVEoGnt05i75b12LBqJdZu2oUjl 8jMDkfYqXfdy9tuiw7BJ4urvCJya4QRDlKsiLx9Napsvg1azdh 15FLuB YjPzqwTX0nRJZAxSu0gkClEiBaaJECgTIcI0RoERqDD0r1lYCM jHys9KRkZKCtKzSLx5//fVTdWpyRXxaWhbyRdI6f/0TJbJOdLmTFhKgRApMCiVSIECGa4wAJVJj6FkxCVQhQImsgoML OkSAEikwWZRIgQAZrjEClEiNoWfFJFCFACWyCg4u6BABSqTAZF EiBQJkuMYIUCI1hr7RK165ciUmTZrESUcYfPjhh2jRokXZZGtr i8jIyEYfI6yABFRBgBIpkCIlUiBAhmuMACVSY gbvWJDQ0OFlFTKCV/LJU0XODx9 rTRxwgrIAFVEFCLRC5dulTxjjg5OVkV7daaMnRFIpctW6bIQWJ iotbwY0M0R4ASqTr2y5cvVxxfMTExqiu4gSVRInVHGGuSWkpkA wc w9ROQC0S2bFjR8W74tDQULV3sjEr1BWJ7NKliyIHQUFBjYmEZe sIAUqk6hJlYGCgOL58fX1VV3ADS1KWyA0bNuD48eOctJhBu3bt FONn3bp1yMjIaGDmGUYC6iVAiRTImxIpECDDNUaAEqk69Noskc fP1ddR1lSoxDgB2saBSsLVQMBSqRAyJRIgQAZrjEClEjVoadEq o5lcyyJEtkcs940 kyJFJhHSqRAgAzXGAFKpOrQUyJVx7I5lkSJbI5Zbxp9pkQKzCM lUiBAhmuMACVSdegpkapj2RxLokQ2x6w3jT5TIgXmkRIpECDDN UaAEqk69JRI1bFsjiVRIptj1ptGnymRAvNIiRQIkOEaI0CJVB1 6SqTqWDbHkiiRzTHrTaPPlEiBeaRECgTIcI0RoESqDj0lUnUsm 2NJlMjmmPWm0WdKpMA8UiIFAmS4xghQIlWHnhKpOpbNsSRKZHP MetPoMyVSYB4pkQIBMlxjBCiRqkNPiVQdy ZYEiWyOWa9afSZEikwj5RIgQAZrjEClEjVoadEqo5lcyyJEtkc s940 kyJFJhHSqRAgAzXGAFKpOrQUyJVx7I5lkSJbI5Zbxp9pkQKzCM lUiBAhmuMACVSdegpkapj2RxLokQ2x6w3jT5TIgXmkRIpEGBzC 5dlI9LHE2537uJZTB6KJdUBSJEW/AQed6tvFyM58BlCkvIhkirHSJCXEIinDz3x6EUk0gtLIFPeDEC Wn4TgZw9x//5jvIzNhkgiL9uDElkNlIDF2iRSlhOFZw/ccefuM0TnFuHNtKcjxMsDbnefIS vSKklYqQEPUdIUtWxIstPRkhFTv1js1AsqZp1Q0NDtGjRomzib 2cr4dTSWUqkliaGzaqVACWyVkTv3oES W4 3FqNQEkADs0dBWtTUzhtcUdMlhjlSlexnyQcp5Y6wsbcCgtOhi Alv3SrHEVR17Bh mRsuBaOtKKKCHkeQlx2YcnkkRhuNxIj7R0wbdle3AnNQlGFaBZ F38W 76bDwX4kRtoNw/AxX2PzJX kFkjQQ09PIRr /v7VGqqZRX19fUWb/Pz8NNOIBtRam0RKXh3BAsdBMDUdg82ukcgQVck6JBFnsGzsEJh bzUdoeFJFC0rzfh0bZ0zFeudQpBRWxhTh4NpFcFTK6aYLvkjJL 1GMJUpkA5KowRBKpAbhs2pBBCiRgvABlEiBAJtbuNgLGwZ jk9a/i/eN1 N25GZECsxkEQcwTSjz/D X1vCdsdzxOZIkRd2G7/OGYgOH32G8b /REKZWAJFgX9ikW1fmDosxvbDp3Hm0EbMGNIPI384j4DUQkhlqX D90QEmZg74dscRnDn7B9ZPsEAvm6U4HZCC9t0okUroBc3WJpFi 700Y0ulTtPzf92G2wgVh6SKl iSIPDYDpu0 wF9bDoGvf3Tp9WPkhd/BnnmD0Olfn2Hc/heIyyuXSFmaG4Y5zsGS7Ydx uwhbJjYD31sluCkfxIKKt48UCKV8OrALCVSB5LEJtZIgBJZI5a 6r6RE1p0V9wRQJpEdoG/SC20 tcVGtyhklVSSkSLy HT0szZBx3/8G/Y7nsDz0m/4YdIw2AwxRvv322Hi7/4VEinByz2O0O85GhuvByCtWAq5OAN v01Bn75f4MCzBOQVe2GjTSeYzjyGZ/EFkMrFSLn5Paw6WWLJ5WB83LGH4qofr0RW5qBhr3WSyC4GMDZs g09tN B2eMbrNw/SKPz55QDYmHREy4/t4Osfihj3g1gxZXh53j9ohwlKElnivRlO653hHZtfntNby2Hdx RKLLwYipbhcNCmRDcujpqIokZoiz3qFEqBECiRIiRQIsLmFl0l kR5hO/waOPbph1JZ7iK60SGk0/pxhhdFLZqJfq3Zw2OGB01uWYdnaXTh9djVGdOiBqQqJLMC1RX3 w ZDVuB ZqXjGTuzzE2w7m2Le SCk5Plih10X9J70G57E5kEiFyPx8kKYdRyA711C8Z9OlEhVDb8 6SWRXM0xd4AD9HqOwyTUcmRWXoKXRJ/HVAAcs/rIfWrcfDT//ADw uBzfrd2Jk2fWwL6zHqYeeH0lUuK3E3Y/nMXD6NzynF5ZDMvOA/Dd1WCkVtwmp0SqKrPqKYcSqR7OrEX1BCiRAplSIgUCbG7hFRJp Nv8Qdk8zhuGYHfCMyUbpxUhpzCnM7D8a6/9cB/vOHeGw4wmePvVDWGI2CmOOYIpeT0z7o/JKZBFuLTXG59bL4RqRURZfirLowVoMaP85HPf4IT43BwFnVmDc YFuMn/MdVq9ejGlDrDDkq1/hFpmFTt15O1tVw69uEmmBeQd3YrpZH4zZ6o7IsjcPUsSe RrWjutwfO1IdOvsAD//MKSEBiAsMQsFMUcxvachpilJpDzvFb4cPxnjZi/D6tVLMG2oFWxn7oRrRCaKKz5fQ4lUVWbVUw4lUj2cWYvqCVAiB TKlRAoE2NzCKyVywUU8PDoXlr3HY ejWORISmViFvqP3oAbD3dhYo9OcCh7JrLcCmQJRzG1ikRKEXXy S/TtMQBz999DZI4I4sxAXPzOBu0//BeG7XiOuOwChF1cjuF6n6O7xTCMHtkfPVq3hcmM3/AoLhddelAiVTX86iyRZz1wZH5/GI3/GR5RWZBI43BujjUc1l2D564pMOhSKpGlz0SW/8kSjuOL6hJZGIaxVmbobj4Uo0cOgF6bdjD5Yi8exORAXPHZG0p kJUHdeKVE6kae2Mo3CVAi32RSrzWUyHrh4s4KibyE4IDzWGjRB 5P2eCEuOxrn5vTHqHU3ERx4GNP1apNIoCTJE79 NQhGpoMwetIXmD5xHMZ/MQKG//4MTrt9ERt0DatHmWPg1A047OyOhw/d4bx3Loaa2mDB0ef4v7Zd UykikZknSXyXAD8LyxGf OJ2PUwGpnRFzDPejTWXn FgCNfometEilDwo21mLh0B/647IaHD /h6r75GG4 GPMP yAxr/zLgyiRKkqsmoqhRKoJNKtROQFKpECklEiBAJtbuJJEhiTH4PIC c/Sduh9PvI5g9oCRWOsSitTYP/FFHSQSchFSX7nj7L5NWPn9cqzbcRiXLqzFiE7GmHc6COHOy2De sT8WXwlAasV9TlmOD7bYdUWvmUfx/z5qT4lU0firu0QGIiHGGd9YmWDK iqykQAAIABJREFU3od4fGQuBo1ag2tByYg9NbMOEpmPu8v7YYe bN5Irc5r7DNtGdUfvLw/DPyG/7Gt KJEqSqyaiqFEqgk0q1E5AUqkQKSUSIEAm1u4skSmFiLx4lyYGn Bn9Y4wGjEGlwPSUNRysk6SKQcOa9u4cQpV/jHxiEhKRnpecVIvLII5j2d8MvjWCRcWYg n9tgpXskMio/AS6NwP6x3dBj0n785YO2lEgVjb/6SGRSQRIuL7CE2fSNWOVgArvVVxGYUoiU03WTSJfFxvjNyxfpS jk9OFEP hP34nlsLiVSRTlVZzGUSHXSZl2qJECJFEiTEikQYHMLryKRxZA mnMUsk74w6v4ZzL67huC0YkhT6yaRuZ6b4TjAET cfY7EQhFyI93wy0Rj9J24Gw9ic1AUdhTT ujBetEf8IjKhqg4C2GuWzG2Z1fYbbqLlp92pkSqaPzVSyKLpEg 8PxcWJsbo/pkZll0JREqRFKl1kkgJwo/PwLSNx3AvIgvFxVkIv7sd43t1x4iNdxCRWf7l9bwSqaLEqqkYS qSaQLMalROgRApESokUCLC5hVeTSLk0Dqdm9kWbj3thweVgpBX LIauTRALS1IfYPXMwzAfaYdzUaZg4chCsbL/E9pvByCwq/d7IBHjumwe7flawdZiEadPGYbiVMfqNW42zL1LQvgu/4kdVw69 EimHNP4MZpu2xX8M5 H8qxQUyWV1lEg5xIkPMHm0A4Y4TCzL6Yj xrAauxJnnichv4TfE6mqnKqzHEqkOmmzLlUSoEQKpEmJFAiwuY XL0uB78wKue8Ugp7j050WkSH7ugvNnb8M/Nb/s07Xyokg8uHwBbgEZKKj4uK28MByel6/AMzQLhZW3MeXFSAlwx7nffsKalauwfvsBnL37EkkF4orfz5ZDn B6CR1ePYufG1Vi fBU27TkBl2exyBFJ bOHKhx7tUmkLM0fty 64El0dvlPUkqT8eLmBZy95YeUPBHkkKM48iGuXHRDZma omWleX9wxRmeIRkoqBBEyMV4cusMdlXmdPdxuPjEILtYwp89VJ DTrRlKpG7li619TYAS ZpFg YokQ3CxiCVEZBDUpiN9NQ0ZOaLIJFVfMeLcvlyMQqy0pCSko6c Igkqd9Hjb2crUxI0X5tECiq8puAqOS1R5LRyV97OriShG6 USN3IE1v5JgFK5JtM6rWGElkvXNxZiwhQIlWXDLVLZC1Np0TWA kjLNlMitSwhbE6dCVAi64yq5h0pkTVz4VrtJ0CJVF2OKJGqY9k cS6JENsesN40 UyIF5pESKRBgLeGrVq3CjBkzODUCgw8 ICfzq5l/NV1MyWyrqQaZ7/169fr9Dnio48 UhyLdnZ2OtGXyMjIxkkmS9UpApRIgemiRAoEWEt4t27dFCfXFi 1acL6RGPj7 9eSCfVs1tfXV TYz89PPZWqoBZKpAogCiiid /einHD84R6zpNeXl4CMsbQpkKAEikwk5RIgQBrCadEqucfAiWyl oFYy2ZKZC2AGnkzJVI95wllQadENvKg1pHiKZECE0WJFAiwlnB liVy3bh1 //13nZg eQTxZURbW13q1atFG2kRNYyEGvZrG0SefnyZcVxkpGRUUvrdX zskSuXLlS0XddOV/oSjvbtn39K1eUSN0/blTRA7VI5Llz5xQHdU5OjirarTVlUCIbNxXKEvnq1avGrUyFpX fv3l0haAEBASosWXVF8YM1qmOpbRKpup7pRknKEunj46MbjdbB VhoZGSnOa5RIHUxgIzRZLRLZCO3WmiIpkY2bCkpk4/GlRKqOLSVSdSwbUhIlsiHU6h9Diaw/s6YeQYkUmGFKpECAtYRTImsBJGAzJVIAvGqhlMhqQNS8SIlUD3 BKpHo461ItlEiB2aJECgRYSzglshZAAjZTIgXAqxZKiawGRM2L lEj1AKdEqoezLtVCiRSYLUqkQIC1hFMiawEkYDMlUgC8aqGUyG pA1LxIiVQPcEqkejjrUi2USIHZokQKBFhLOCWyFkACNlMiBcCr FkqJrAZEzYuUSPUAp0Sqh7Mu1UKJFJgtSqRAgLWEUyJrASRgMy VSALxqoZTIakDUvEiJVA9wSqR6OOtSLZRIgdmiRAoEWEs4JbIW QAI2UyIFwKsWSomsBkTNi5RI9QCnRKqHsy7VQokUmC1KpECAtY RTImsBJGAzJVIAvGqhlMhqQNS8SIlUD3BKpHo461ItlEiB2aJE CgRYSzglshZAAjZTIgXAqxZKiawGRM2LlEj1AKdEqoezLtVCiR SYLUqkQIC1hFMiawEkYDMlUgC8aqGUyGpA1LxIiVQPcEqkejjr Ui2USIHZokQKBFhLOCWyFkACNlMiBcCrFkqJrAZEzYuUSPUAp0 Sqh7Mu1UKJFJitJieRshxEPX I 2734BuXD5GkOiAp0kO88eDem9tFyYHwehaOtEIxZIowCXLiA Hz6AEev4hAWkEJZHLFxqozomQEej1DWFohxBUF1Fkihbb7eViV dksLMpGcmID4 PjXU1ImCiVSVDZfVpCM0BeP4fnAC6/isyGSVG4B NvZVVNb1yV9fX3Fb/P6 fnVNUzj 1EilVMgR26MLx57uOHeixjkFr1xEgGkGQjzeYh7rg8QER75 hhTOt4S0vIglpSfCCS5CQh 9hgPH79AeGo xNLXx1ppzboqkdJ4Lzw5fx2 Cdkoen3SVIapVfO1S2Rp7v3wpDT3z2OQU1jyZvulGQh/9gj3771Abm4hIM1HflIwfJ88gOfj5whPyXsjv9L8ZIT5eeHhw6 cISshBsdK5FpAiPykUL7wewcsvEmkFYkjfrJVrGokAJVIg2CYn kSUBODzPATYWlpiwwxNx2WKFNJWhkkTgzLdOsO1njcVnwpFWUH EyF0fj2oZpsJ/ MzzisiEuXS3PQ/D1XVg63QkOY8Zg9GgnzPj ANwjs1H8xlEuRvS1DZhmPx077schq6wAoM4SKXmFI/MdMbi03ds9EFu93dIInFk2FrZWpe0OQ6pSu69vmI6R03fgflxW ebshRfjFDZg7bRwcHR0Vk9OsXbgfnwWRHCiOuYeDK2dinIMjHE bZYdSEBdh NQBphZIyXpTIhh1YlMiGcdOuKAkCjy/GOFtLWI7bgrsR6WXHjHIbpZHnsWLScFhZDsfYkQ5wUjrOyo 5MZi0wblMGHNDbmLv9zMwztERY0aPhtMXy7DvTiiepEpQWHEe0 TmJlOcgISYF6fe3YfuY2Tj2xBd 0SkoFtUgXcrgNDxfu0RKEPTnt5gwrB8sx/2EO2FpKK7i 1JIoy5g1ZQR6G 9AAHerrixdzm mewIJycnOIy0x5jppfkNQXpZcuXIC7uDA6tmYdJYJzjY22H0lK XYe7t8uzw/AuG39mDVV2MxarQDHBzGYeYP 3ArOB0FNbx30TC Jlk9JVJgWpucRIqfYF3/dvjPP/4XH1iuw93oLIiVGEkij2Jqnzb4519aYujPvojPLX37LEaMyxqM 6PoR3us B5crThzisDNYbGsK62mr8OuRkzix 1uMNDbGmJ9cEZMtqiKn4hgXrBnRFR 91x2zL4UiteLMU2eJFD/B oHt8d9//A0fWK6Fa1TVdksjj2Ja3/J221Zrt123j/D37rNxKTS1/IQnz4LzAiP0sByDuUuWY/WaNVizZg3W/XwRfmn5KJGlwW3zGJiajcI3Ww7i Il9WOVkht623 FcYCoKZbwSqTRk6jVLiawXLi3dWQzvzbbo8mlL/O19c6x0CUWaSLmpUkT/ RXM23 Av7xngHmzv8HaimNszZrVWOzUF60/ag3LHy4jNCEA57 zh6X1FCz/ Q/8eXwPvnM0h6njjxj1sw/C0ovLziO6JpHyvGf488fvsXiiFfp37InhE8ZhyoqjiErIVgald fO1S6QYT7eMQPc2pbk3w/KrQUgtfddd SeNRvTJ6ejX4UP89R8DcXyZA ytbGA5ZQ1 PnQSpw/vwEI7U5iOXosrQSkozA/Eme8dYD1sOlb88gdOHP0ZC4Ybw3TsZtwIjYf/ eVYbKMPM/s5WL/3CI7tX48ZwwbC4YfTeJGYzyuSldwb8ZUSKRBu05TI9tAzMkTrT 4fip/sxyFa8OZYi6vh0WAwwRoe//x/sfymXSHHsTaxzGgLr3q3wz57zKyRShrQ76zFmxNfY6xmJbLEM8 qIYHP/CAB3tt BxbA4UbxTFsbi5zglDrHuj1T97Yn6DJbKDot2b70UjS7ndJ76A 5cCKdldIZEnsTax3soV170/L2q2QyBI/bB/RHYOWXcaLiFRkZmUhq3TKKYBYJoO8xAubbDrB5Muj8IkvgFQuQ tL1b9GvoyW dS79hynn7ewGHleUyAaC06qwconsatAXBq1bY iGWwhLV3orKo3BqVkDYWPcAf/491Dc9/QtP76yspAR5YZfppij7/BlOPEkHrlJd7F54ih8vesuQjJEkMmLEXtqNoy62uF9611wC88o O4/onEQWJ DFzf1YZGuILv/9LzoO/AobT3giPbdIqzJZvTF1lcgehqW5bwPbdS4ITnt9wUAacwanZxh hsHEHtPzYCvMMW8F47E/Y/iAB6SJZ2a3tyHML0a/HECx39kaEx1aMtRyKefvdEZ4thkyWj0jnzZj99ab/z957RkWVrY26 9zz49wzznfP3l/cX /QZgwgRlQUcxZMoIi2CXMGs7Y5tlkx59Bm0Ta1sbvNZEmCIgYyk iXnop47KlAEqS4q0QVOxiiFtdac653Pu9aqp94VimtBv7J7XEe aNu7Hyst xOcWU1KYStCRydh0mcT FxGkf3HGq/KIxN/6EhASqSfBuimRjbF2dsXBvAX2O54RlaG0MUkk5yZ3Y9iCqXT/W30cZBKZGsX99Y4MGruRbdOsqd/ZVSmRUnKiA3jy/BXx2QXyT4SSjFfsH2VO85Fu MVmKj8lFhJzfz2Og8aycds0rOt3xlUPiew80QV7C3Mctj8lqtR JVGcm9JdGXcDRdwpUdzfMEoZd2cadHZVVSKlKVeZaWWFs9tdfn vyjCdPvXkdl1F2nU5xADvsmtN 3BG8Y7Iplhbx6YYrXcx6suzue1KEROq8VwmJ1BmdCTVUSKS5zX hmD7fE0uEHfnmXqjqjIYm xMw DrhO6s63je0JCIxQxC7N4 0lV/p2GMDCsz7EZRdTkhND0LMXBMdmKi6BkWQSengcbSxG8J Dj/P842f5caS2SSRIyfA9zKyxs5iwaDZDhszh0JMI1WU8JpTMCqFU VyItu45l5rBWtHbYxP23KarLhKKvzGFqp964OHenfhNbjm/exo3nH4jMLlYWFaRkP1pNP4tezL98kYc7BtNp0BKu rzidZAXT5968SokGH//MGLir7OwWwv 23opd18nUlozKPTfhX3rrsw8G0Bs6WVLFUYh/jAkASGRetKsqxLZZd5J9o7vQBvH3XjEKKqGkugLTO0 jHXn1zG4SRMcdvvifXUDowaMYdPNQB5tHEBTm1KJLAe26AO/nXZjzSx7bDrZseisH4nKC1aKYh yadQAxmy6SeCjjQxoaqOXRHaZdwK3CR1p67ibF8pqpyT6ItN6D GfduXUMMVPE7XV1I04DxrDxZgC/bRxIs65lEln0cgsDzZrQtu9wRo0by6hhgxk biH7H4STlicBaSbB55Yysr8t41xWsXHjMqba9aT/5N388vEzsg/U4prIcvnX4lchkVrAMtlFlRLZdTaHdk3EpsMotj36QKr8XV5Cz JXZ9HNYw6k1w7Bo7qCSyJLE39gwzIquzgd4EpGhFI/SQRbx8clZ9q bzYhunbGbf5IlP70nNlNxzXZtlMjc9/e5dMMHj/dh3L1whafhSWRXuGGkdOym83 1JbLbTA7smEi3TqPY8jBckXtJLFfnDcC6zxJOrB6Opbk9vi/fyW 0VJ3wzo/izgpbWneazOGHh7jk0gqroVNZPGc6UyeOYeTQwQwfv0h TWxK6n1W9DLnmw4LuR2aoPqQku/1A3bmzbDf6cmHz7XgbiXTSa9OkQiJ1AlbWaM6K5Eu1/E4OYMu7cawzzuWzGIJMZem033Yeu55uDG6RRPsV 1itl0/nNZe51VyJgE7bKuUSGmmB0eXTMPBphn/qNeJCXt IyKjgJLiOH7d7ER/p7Vcf5VMZsAObPWVSJdrvDg5E5v2Y9jnFaOI /IMegxbz10PN8aYmynj7l8W9067chIpJfO3jdj37IvTom0cu3CF K2d24WJrRXu75Vx9nUyuJJf311cwxLIx5jaDGD60BxbfNqDLtK N4xWVRJBUSWbaHaPebkEjteJnm0qUSOYeLj04wt1cnxux6gn9a McUykZjbD4e1N3jiNp62LUolsoiPl2bRtfUAll97RWLlW5WlmX idXMGskV1p8W19Oo7dztTj/oSn5sufBFH7JFJ242EB QUSJCVSCvPzKZZdKmOaCVVFVX2JnMW5X47j0rczY3b8xru0IiR xP E6cAS9l9zhNzdnrCxkEvle1TeFifieXcaQjl1w2nCD4OCTnJvU mGZNW9Jj1CK2Hf2RC6d34Sq7ZnLEem6E nBqZlcsG3Zm5v6HhKflU5Aezs9rh2L 1/ i/ YXvE8TElkG2Di/CYnUk2vdlcibhIdcZk4XK8Yd8iUuIwr3mT0Yuu4e4a9PMMG8EV 17tKf90FVcC0oit7iQYHUSWZDI2wBfXvxyld2TumHZeTKHfWJ4 2ALTv1HsvpaEEm5xRQGG0IirxP26jJzbTow7qAPsbK4Z/Vg6Np7vH19gokWjVVxXw1Uxl1JIvPjgnj88ClBsRkUyB4lUpJD xM1F9GjSjunnXhP/7i7rHLrSa wajl57yJMnD7m6ZzoDOg9kwbkgEnMkohKp434lJFJHcCbVrEwi LwcHcmVBLzqP28u wM kRf2ESz97Vt98xatTU2lXKpGFYZyY0IE2w2WnvtMqVSEVwpX0L gg/j1 45jaN3m26UK/1JPY U1yzXSsl0qRyVr1gtJHICwH uC/ui83Y3Tz5kEr0jQUMdFjFojtRBJ eQQeVREqR5sXgcXoFo3p0ZZjrAR6 TSUn9gIXJjWiQcOeLFVe8ygtySbyxlL6turD4qv D/Yx64JXencdQAjJ05n qRxjHW2o93fGuCwQ1Qiq5dV/ZYSEqkfP qyRL5PjOTqbGs6TDyGn98ZZvYYwpq770iOPsuEFvVp8Of/l79a9mfMpOnMmj0TJ5v6/OvfWjNonAtHnn8iLf0zSalZFElKPw2W8PnJKno3asmk079ycJI 1Deq3ZsCYSUyfNZuZTjbU/9e/0XrgWFwOPyc o4AW5uaq5waGhoaqz5b87uwmdHG5TnhCJNdmd6bjxKP4 p5hZs8hrLnzjqTos0w0Vx/3wLEuHH4eT0ZekfxRGyXSsrpASfwZJlg0ZMhWX167L8bGrAfzr 4eQlK8YW0m6Dz/YNafd9LO8TsjF3MJCFXdISIj6uP/AOeJh44aDL54TWZ5lOYkMiSXixnx6dpnIyEPBeJ2ZR//hq7gR onoC9NUEil5d4IJVm1w2PaYj2V3xIEkj4zkNLIKi1XPni35/JwNts1p/S//ZMJRf2KypLX2OZHlqdWG37WSyKBo YfvPl0nsO JBz/OH4TDymvcjs4h6tJMpUS I/v9Q 7tnoF9956MXHSAe6FJ5BZJkWbe5rarBU07z BiYBx5ysNxSfQZJlu1Z9w bz4mJpD46gEX921g2aLFrNh8kIuX1mHfsgszTvkTnV12DK8NfG tjjEIi9cxanZbI5FzirsygU6fJbF8/ko62q7nzLoW8hHNMaNEAy05DGT1uEpMmT2by5Ek4WNfjL99Y0t dxJvufRuFxZjVzVpzE91Om6qLngpc/MKBJS5xP/sq5LUuZN20SkybJ2k9mkoM19f7yDZZ9HZmx7wlx6TpKZFIuce4 zsLYui/vncGXc5r8X9wz2PYnE8/xmlmw4h39CWdyFr90Y3syc7w4H8fbCXNo16seqxx9JK73FXPKB w6NaYDH2CK/isoVE6rhfiUqkjuBMqll5iYwnJ/4n5nW3wcJpK6sduzBk5XVCEnJIvFQqkR/45D4bawtb1v7yjpTSOySAorCrbHRdyXEP2bNjlYMsCGDHUHPa/8vfGX/kJdFCImss 9pJZCzZ8TeY36sbkzauwrHrUFZcDSIqV0LiZYVEetw8yWGXIfS 26sa4lSd5FJ5KXul1oUUhhOy1o02HcRzwjCRTead10esDjG7bm anHH/Pw1hXOnb9PYEQUMfHxJGfk8unOMvp2HMmWX5XXYtYYna9zRUIi 9cx73ZbIAiQxF5jSsQPWrRrQeeltwlPykSSeY6J5YwZ9f4Nn/mGEh4cTHv6a28t70rC9Mwcf hGZkcvbM5No36I7s449IyIzn9zEYK59P5AWrZzY5/mRmOgIPryTtVW8Xt9eTs G7Zl44AG kRnyb6vQ7jmRykpkUj6S2ItM7dgRa0tF3G T85EknWOiRRN53E /iHsiBx74Epmey5sTE2jXoidzjj3lY0Y OYnBXF1hS8u2Y9jnEUNq6AnGt7Ok/6LTPI/MoKAgnQ PdjK6bQvsNv9KxOdCIZE67ldCInUEZ1LNKkpkniSOK7O70cq8N ZYNOrPo2isS8iQkqSTyDR7r 9PCZg6XQz6pKk6yIUkiLjKziyXdpx/g13efyctNIuTGGoa0ass3DUaw8/FHPheJSmRNpV9bicyVxHF1Xk9sOrekQeeFXAmMJ7ekhGSZRJoP Yvt3XbFu0YFW9stwc/8ND19//P398Q8IITIlkTSf3YyxtsZ xTm8YjLJTXvH/c0jseo0gf1Pg7izdRzDu9iy/Lw30dn5ZEU/59CUHnR22s5D2RMBRCHS6JuGkEg9Edd1iZTKHo8zqT3//Gtb5l1/S0q lBK5RMruci592LgMYtEX10QWxT9j/8yBdOlux hJ05g8xo5u1n2ZtO0OYWl5XzwItshA10SGJ Ujj3uyLO42zPspjGRZ3EnncLYw zLuCtdEQmHMb yZ2p/O3W1xcpbFbUtX635M3n6Xt2n5FBfE8HjvTOy692Lw6ElMnzYe 97WdB/5PRf9E8gpFs J1HW3EhKpKzlTaldJIqUSoi/OZJLFv/HfrWdxKfgTudKSMokM8OLyDCtaDNvM8w9pFY8LRZ94cWQeg7v1 wHaUM1Mnf8fg7l3oO3Ezk92e8iopp1Y J9KUsqVNLFpLpFRCzOU5dGv8Da1nnCcgLpcSlBLZoiPd/ v/8m9//jt/t xKt9596devn I1YCxb7oWTmPqRh7tnMrhXP4Z9N4kp44fTy6YP4zffJCQpk/gXB9gzoTs9 g3nuynTcB5lS BE9n4UxAJ4itrtEmtzssKidQZnaJhnZPIkkT8bp7n otIMuTfTVhMvM91zv34M4GJ2fJPdtK8dzy6dIEHwSnkqD7qlZA adIeL118QkaEURGkhKW8e4374B1YtXcTiFZs5cP4hrz7JHtr9J fiS1CDuXLzOi4h0ZE/Skf1UuxJZksjLWxe4/iKCDHljWdw3OHf2ZwLKx31ZEXd2hbjvKuJOL427gMSQR1w JIt7MUtWbGa/LO6E0rilFCa/5sm1o2xbs4zFi5exbtcJbnpHkl6g G5t8YifL/NbnSlCIqtDydSXKSEp4A6Xrj/nQ1quXPKKP/nhe 00526/JD5Tdke1lLz3T3C/dJ U5HjePrrCpYfBJGVV ppVpBSmhvHs2lG2rpbtayvYtO8c94PiCEsrpqC2fu2hqadQTXy aJbKEpMC7XL7xjHepCsEv/vSSny e47ZfHBnya8il5H14xtWLlzl/5ChHDx3k4MFKr8Nn fVNMtlFUvITQnnsflie/6XL17P79M 8jMmQPzdUmp9IQtB9Lu3fyMply1i5aS8/3vEnOiO/4ocRNeMRk/UnICRST4Z1TiL15FFV85L8TFISPpGQmkWBRLvHWFRbIqtasZ7T 5HEn/k7c0kKyUxP59CmJ9Lwi fPOSlcpJLKUhHb/C4nUjtdXs3RJAVmyfS0hhcyC4gr7moyBuDu7ZrYEzRJppDgk WSmJJGYnE5ukeKDetmapBTnfiY5MZHUzDyKSsQ57DI2xv9NSKS ejIVE6glQQ/M/UiI1hPa7s4VE/i4etTOFRKpFI2b8DgEhkb8Dx4Cz/jCJNOAYRFeGJSAkUk eQiL1BKihuZBIDYD0mC0e8aMHvEpNxSN KgGp4T FRNYMcCGRNcO5Nq1FSKSe2RISqSdADc2FRGoApMdsIZF6wKvUV EhkJSA1/KeQyJoBXl4iHRwcmDVrVq17RUQov6u9ZpDV bXUiESuXbtWtaElJSXVKahCIo2bTiGRxuMrJNJwbE1NIn/44QfVMTcmJsZwAzXRnmq7RG7dulWVr6ioKBOlDOUl8k9/ pPqCxVq0 9eXl4my7c2BlYjEmlmZqba2GTPBKxLP0IijZtNIZHG4ysk0nBs TU0i27Ztqzrmyp67V9d/artEWllZqfLl6 trsukSEmmyqfnDAhMSqSd6IZF6AtTQXEikBkB6zL506RL79 Xv1JTU/XoyXBNxY01hmEpJNIwHGuql9oike7u7qpjRumxozb8X79 fZWki0qkYbdqIZF68hQSqSdADc2FRGoAVMdmC4k0TEKFRBqGY0 31UlsksqZ4GHo9nTp1EhJpaKjK/oRE6glWSKSeADU0FxKpAVAdmy0k0jAJFRJpGI411YuQSOOSFhJ pPL5CIvVkKyRST4AamguJ1ACojs0WEmmYhAqJNAzHmupFSKRxS QuJNB5fIZF6shUSqSdADc2FRGoAVMdmC4k0TEKFRBqGY031IiT SuKSFRBqPr5BIPdkKidQToIbmQiI1AKpjs4VEGiahQiINw7Gme hESaVzSQiKNx1dIpJ5shUTqCVBDcyGRGgDVsdlCIg2TUCGRhuF YU70IiTQuaSGRxuMrJFJLDi6EAAAgAElEQVRPtkIi9QSoobmQS A2A6thsIZGGSaiQSMNwrKlehEQal7SQSOPxFRKpJ1shkXoC1NB cSKQGQHVstpBIwyRUSKRhONZUL0IijUtaSKTx AqJ1JOtkEg9AWpoLiRSA6A6NltIpGESKiTSMBxrqhchkcYlLST SeHyFROrJVkikngA1NBcSqQFQHZstJNIwCRUSaRiONdWLkEjjk hYSaTy QiL1ZCskUk AGpoLidQAqI7NFhJpmIQKiTQMx5rqRUikcUkLiTQeXyGRerIVE qknQA3NhURqAKTjbEmsN7cfvSIhq4ASHfswRjMhkYahKiTSMBx rqpdaKZGSOPzuPiY4Lp08UzqIVJE0dRIpzYzmle9L3iZkkS poqF8koTsxA 88vXEwzuQD4lZFEqkFRYuzvpEeJAPXj5BfEjK/mJ hYXr2B9CIvVMqJBIPQFqaC4kUgMgbWdLM4iLSiT18RbGLTnLy5 AQIpNyKSyueFDUtltDLS8k0jAkhUQahmNN9VK7JFJK5qdoklKf smPycs54BhIclUR QVFN4dJ6Peoksjj0HEsmTGfr3bck5lVxDJRmEv7gKGtnjWfM6N E4Ojgweur3HPk1nNRcmXVKyX7/K8fWzGKc0yhGjXRkzLTvOfzwLSny VqHWusaCInUM2VCIvUEqKG5kEgNgLScLc3y4 yG5Syd0JPm1sNwHj ZNecDSMo0jTcAIZFaJlTN4kIi1YAx0cm1SiKl2QRc3MqqZRPob dGZoePHMmn1j0TEpZsoXVAnkUVeP2DbshNTTr4kOvtLiSx4d40 VDj3p 90ithw6xZnDW5ht15kuIzdwMyyJvIIIbq4eSa8 Y1j4wwFOHN/NIoeudHXcyO2wZKryUpOFpGNgQiJ1BFfaTEhkKQnj/C8k0rBcpXnReN9wY1YfS r/04xeUzbw49MIstSfyzFsABp6ExKpAVA1ZwuJrCYoE1msdklkPj F t9k/dwBtG35Lkx7OrDn5iKT0XBOh WUYukmkhIhz07GxHsnG269Izi8BSRbvL82je8uBfH/rNQnxj9k23p6p2 8SmpSPRJpH9MXZdGk5hPUPw0g2jc/mXwIx4BQhkXrCFBKpJ0ANzYVEagCk9WwpGb6HmDF6Ogsn2TJ43 nE8YzIp vJDuNY9G6KBkEhDUAQhkYbhWFO91CqJlJ3EzfTn NzxzJzvjN3QeRx5 pHPhSZyEKkiabpJZAnJgXc47/6Y8ORsiuX9Ssl vJYBFr1wvRpMXGo0AU eEhD1mVzZApIswk5MpmMrB354FE6qolEVEdWdSUIi9cylkEg9A WpoLiRSAyCtZ0vJCbvFGXcv3vrf4tS5x7xLyVEeILXuzOANhEQ aBqmQSMNwrKleap1E5oRz9/w1PF/7cfvHCzwKSyDLVD6JVpE03SRS0ZG0RCq79FHxkx/N/TVDaNNpEoc8IslU3YxTRNSLyxz9YT6je9swaO5hnkSlY8JeXQU l3SYJidSNm6qVkEgVCqP8IiTSCFil eTlSygpKSAvr5gS2UHSRH6ERBomEUIiDcOxpnqpbRIps6r8vHw kJRIK8vIoLilReVZNMdNmPfpIpGo9RUn4X1yFfefOjFxzleDEX FQOKc3C5/RqZo 0ocW3Deg0bjt336aY/F3rqrHp8YuQSD3gyZoKidQToIbmQiI1AKpjs4VEGiahQiINw7G meql9EllTZAyzHn0lUpofh/f5dYzt1Y3Bc/Zw73WK4vR1aXjSAhLDA/B eo/LO6fSp11XnPc IeJz3b8oUkhk6Uag4/9CInUEV81mQiKrCaqOLCYk0jCJFBJpGI411YuQSOOS1kcipTkf eXRsKY69euLgsofbwQnklJ66l STmfqZ7MJi1fN2Sz4/Z9OQlrQdfwjfyEyTrtAagrqQSD0pConUE6CG5kIiNQCqY7OFRB omoUIiDcOxpnoREmlc0jpLZNEnPI8vwr5Hb0YvPcLDN7IKZNnl P8Xht9ixbB0nX0SRVqCcXhjEnpGtaTv2AN4RGSq5NO4I/7jehUTqyV5IpJ4ANTQXEqkBUB2bLSTSMAkVEmkYjjXVi5BI45L XYm0aIvD gvc8wwgMDBQ/gp6G0tGfgGJz91wtjHHapgre9wf4fVSuUzQa6LScsl7f4nZ3dv Sc/p Hr5NIy83hTd3NjKiXTtGbHlIeGqhqEQaIrVmZmb86U9/kr/Cw8MN0aXJ9CEk0ripEBJpXL6m1ruQSMNkREikYTjWVC9CIo1L ncl0rw DVvb0Kv/IAYNUrwGzzrAi4 vub60H2b//hf 2apLhfmDBk9k2/13JGXG8fzwPIb06MWQ76Yxe5YzDr1t6DN2LVf8P5EtHvFjmMQK iTQMR316ad68uUrk37x5o09XNdpWSGSN4v7DVyYk0jApEBJpGI 411YuQSOOSVieRJZ98ufHjEfbu2c3u3WUvt7OPeJcUQ C98xzbv6fCPPlybie4F5JIZqGUwpQ3PL5ykE3fL8TVdTFrdp7g ll8U6SbyBQ7GJQvidLaehEUlUk AGpoLidQAqI7NFhJpmIQKiTQMx5rqRUikcUmrk0iDrbWkgMyUB OLjk8nIL8aEnppmsCGq60hIpDoy1ZwuJLKaoHRcTEikjuBqaTM hkYZJnJBIw3CsqV6ERBqXtNEl0rjhm3TvQiL1TI QSD0BamguJFIDoDo2W0ikYRIqJNIwHGuqFyGRxiUtJNJ4fIVE6 slWSKSeADU0FxKpAVAdmy0k0jAJFRJpGI411YuQSOOSFhJpPL5 CIvVkKyRST4AamguJ1ACojs0WEmmYhAqJNAzHmupFSKRxSZeXS CcnJ bPn29Sr8jISOMCMGLvQiL1hCskUk AGpoLidQASI/Z27ZtUx1I4 Pj9ejJcE2FRBqGpZBIw3CsqV5qi0TK7kwuFbCoqKiawqP3espL ZOnjBk3pf09PT73H Ed1ICRST/JCIvUEqKG5kEgNgPSYbWlpqXrsU3BwsB49Ga6pkEjDsBQSaRiO NdVLbZHIjh07qo4Z3t7eNYVH7/UIidQbodoOakQiT548yc6dO Wvz58/qw2mNs4QEmncrJ05c0a17aSmphp3ZQbsvXzcKSkpBuzZcF0JiT Qcy9atW6veXGXfevFH/5w7d0613yQlJf3R4Rh9/e3bt1fx9/PzM/r6DL0CIZGGJlqxvwsXLqj2h1IX aP/r1evnmqbFZXIivn6qv4SEvlVpbtODVZIpOHSaWoSabiR1Y6ehE TWTJ5qayWyZuhotxZra2shkdohq5tLC4msm3n9GkYlJNJwWRYS aTiWuvQkJFIXatq3ERKpPTN1LYREqiPzlU0XEvmVJbwODVdIpO GSKSTScCx16UlIpC7UtG8jJFJ7ZupaCIlUR Yrmy4k8itLeB0arpBIwyVTSKThWOrSk5BIXahp30ZIpPbM1LUQ EqmOzFc2XUjkV5bwOjRcIZGGS6aQSMOx1KUnIZG6UNO jZBI7ZmpayEkUh2Zr2y6kMivLOF1aLhCIg2XTCGRhmOpS09CIn Whpn0bIZHaM1PXQkikOjJf2XQhkV9ZwuvQcIVEGi6ZQiINx1KX noRE6kJN zZCIrVnpq6FkEh1ZL6y6UIiv7KE16HhCok0XDKFRBqOpS49CYn UhZr2bYREas9MXQshkerIfGXThUR ZQmvQ8MVEmm4ZAqJNBxLXXoSEqkLNe3bCInUnpm6FkIi1ZH5yq YLifzKEl6Hhisk0nDJFBJpOJa69CQkUhdq2rcREqk9M3UthESq I/OVTRcS ZUlvA4NV0ik4ZIpJNJwLHXpSUikLtS0byMkUntm6loIiVRH5iu bLiTyK0t4HRqukEjDJVNIpOFY6tKTkEhdqGnfpvZIpIRP/g94FhLPq4wS8ku0H6uxW1QtkVKy4l7z0us5Hq9iyMwr/iIMyecIgv085fOzys8vTOF9UAgfk7IpkHzRDIpS fj6I4lZ VTsVUJOUgSh/j54 wXL2xdKpFV0UPWkP1U9WUytLgEhkdUlJZYzNQJCIg2XESGRhmO pS09CInWhpn2b2iCR0swEYpNTebprKt f8eRkRCqvopPJLyjSfsBGbFG1RBbz9vJKJtn3o EHfz6Lpn8Cj4nIfrWJqaNHIjtwrOExWYqIywk7tFeXMfNZOfDd yRVbATSAuIe72fhnK3cfP2J7NI pVm8/ 0Um1wnM37cWEaPGsX42Ws48egdqblVmeiXQIREfslEqylCIrXC JRY2IQJCIg2XDCGRhmOpS09CInWhpn2b2iCR2YFX2LFuFVP6Wd LVYRLDXV2Zvv48EXHp2g/YiC2qlsgi/LYPxbLen/nf/9aVFbdek1RQLghJDFfm9aLpf/wv/m/fjfiEp8pnFsU/Yde4jvzjLy2Y9KM/MTmllghIc4j2PMdKhzb8vdFI9np JENemS2k8MN11jj2po TC vdjnB033qmD7Km66hN3ApLIq9cN WiqPCrkMgKOLT/Q0ik9sxEC9MgICTScHkQEmk4lrr0JCRSF2rat6kNEpkX5c31Pb Po16Yh3zbpRuNeM/j yEMSPudqP2Ajtvg9iWzVpi0W/6iP7fo7vEkuVEUhib2G66D dGz0Z/7bdpNCIos 8XTPFIb1acc//60108pLZFE8Pu47cXGypb9VA/69gWOZREoiiTzvTDdrB9bdCCIpXwLFmby7OI/uloP4/lYoCQWaLVJIpCo9uv0iJFI3bqLVH09ASKThciAk0nAsdelJSKQ u1LRvUxskEmkmgadcmTB9HuNsh2HXbyZHn0XwuVCzEGlPRPcWv yeRrbuOYepgS9qO3My9sBQUGikh7qf52DrMYVy3 pgNl0lkAgnP9jLV/ju XzuJbs26MutsuUpkjg8nVy5g0doDHFs FIs248oksiSRxJfunL7wC28SM5XXSUrJebKeQZa9cLkSSFzl0 JVDFdIZBVQtJkkJFIbWmJZUyIgJNJw2RASaTiWuvQkJFIXatq3 qR0SmUPY7dNcfvYK7xsnublnLw9D48ksqkUS2W0GblvG063LaL Y fEuq7HJOSTw3FtoxYsURVg5vjYX9Jjye3mD/tGGMXnGO5/e34NCuJ7PLS2RhHKF IUQkZRJ1bgadOowvk0hl qUlUihFUxDLL uH067jRPY//0hGNS6LFBKp/X5UoYWQyAo4xB 1iICQSMMlS0ik4Vjq0pOQSF2oad mVkik7DLA/DzyJRIkBXkU5GRTJJGoPEn7URunxe9WIrvN5My9I8zt15WxO38 jPK0IyadbLLZzYMXlh yZ1ImWw5ew29WRYaOWcsYjmtTA/ThVlkhV6CXEX6haIlWLFKUQ5L4OR5vOOKy8TMCnHKrhkAiJVBH U7RchkbpxE63 eAJCIg2XAyGRhmOpS09CInWhpn2b2iKR2o s5ltoksizfr5cWtSPbuP38Ph9KrE/L2Www/dcfhnI6VnWWHTvQScrOxadfE5URiFFoQd0lkhp/if8rmxmYt9u2M7Ywe2QJHIqPgdILSAhkWrRVG GkMjqcRJLmR4BIZGGy4mQSMOx1KUnIZG6UNO jZBI7Zmpa6FRIv0j XB9AX26O7P/iScXlgzBfvkl/KMjuTy7E80a/5n//bc22E6YzcJly1k6tT8tvqlHu8GTWHLiOdFpeeWqr orkdKcSJ6eXsmYPj0ZNns71wPiydbi lEhkeoyXM3pQiKrCUosZnIEhEQaLiVCIg3HUpeehETqQk37NkI itWemroVmiYwhS3Y3du eTPlhLWN6DmXZxZfEZiXiPqsTzS1b03 IA2PGjJG/Rg/uSIN//4ZmXQYxfutd3iXmapbIogR8zizHsVdvHBfu566sAqnltaNCItV luJrThURWE5RYzOQICIk0XEqERBqOpS49CYnUhZr2bYREas9MX YvqSGRucQxX5vaie7c2NLJ25cLLGHIkybjPtsZioAsX77wgNDR U/gq tYpB5h0Zs8WdJ Gp5BWWv6KxikpkSQopHnuY2r0l7YfMZZf7Y7wDggkODib4VRjR abkUVuObfoREqstwNacLiawmKLGYyREQEmm4lAiJNBxLXXoSEq kLNe3bCInUnpm6FtWSSGkxURdn073JN1hMPo1fTDYlJcm4z7Gm pb3yOZHKFWh7TWRJ0j3uLepMs//8V75t051 tkMZOlT5Gj6FnQ/CSarG08aFRKrLcDWnC4msJiixmMkREBJpuJQIiTQcS116EhKpC zXt2wiJ1J6ZuhZVS6SEBJ9rnDr/gNDELGRP9imO9cT9xGEuPY8kLbcEpLm8fXiWk9c9 ZSWp q JCWAm6cv8jA0kcwvvuFRSvabB5z98Wf849ORPUNcmhZE4E HOLhzK1u2bKn42naQW4GfyKjGtZFCIlUp0O0XIZG6cROt/ngCQiINlwMhkYZjqUtPQiJ1oaZ9GyGR2jNT16JqiVS3tOlOFxK pZ26EROoJUDT/wwgIiTQceiGRhmOpS09CInWhpn0bIZHaM1PXQkikOjJf2XQhkV 9ZwuvQcIVEGi6ZQiINx1KXnoRE6kJN zZCIrVnpq6FkEh1ZL6y6UIiv7KE16HhCok0XDKFRBqOpS49CYn UhZr2bYREas9MXQshkerIfGXThUR ZQmvQ8MVEmm4ZAqJNBxLXXoSEqkLNe3bCInUnpm6FkIi1ZGpYv qOHTtYtmyZ/JWSklLFErV3kpBI4 Zu165dqm0nMTHRuCszYO 7d 82 biFRBou4aYmkXv37lVtf/Hx8YYbqIn2JCSyZhJTWyXywIEDqv0hOjq6ZmBpWIuQSA2Ays82 MzPjT3/6k/wVHh5eflat/11IpHFTaG5urtp2ZA9VrS0/FhYWqrhDQkJMMmwhkYZLi6lJZNu2bVXbn7 /v EGaqI9CYmsmcTUVons1KmTan/w8vKqGVga1iIkUgOg8rOFRJan8cf83rx5c9VO9ObNmz8mCB3WK iRSB2jVbCIkspqgqrGYkMhqQDLiIkIijQi3XNdCIsvB0PNXIZF aABQSqQUsIy0qJNJIYNV0KyqRasBomNyqVSvVh52goCANS5vOb CGRf2wuhETWDH8hkYbjLCRSC5ZCIrWAZaRFhUQaCayaboVEqgG jYbKQSA2AqjlbnM6uJigTWczKykr14cnX19dEovoyDCGRXzLRd YqQSC3ICYnUApaRFhUSaSSwaroVEqkGjIbJQiI1AKrmbCGR1QR lIosJiTRuIsQ1kcbjWyPfWCMk0ngJrG7PQiKrS8owywmJ1I2jk EjduFVuJSSyMhHT/ltIpHHzIyTSeHyFROrJVtydrSdADc3FjTUaAOkxW9xYowe8Sk3 FNZGVgNTwn KayJoBLk5nG46zOJ2tBUtRidQClpEWFZVII4FV062oRKoBo2Gy qERqAFTN2aISWU1QJrKYqEQaNxGiEmk8vqISqSdbUYnUE6CG5q ISqQGQHrNFJVIPeJWaikpkJSA1/KeoRNYMcFGJNBxnUYnUgqWoRGoBy0iLikqkkcCq6VZUItWA0TB ZVCI1AKrmbFGJrCYoE1lMVCKNmwhRiTQeX1GJ1JOtqETqCVBDc 1GJ1ABIj9miEqkHvEpNRSWyEpAa/lNUImsGuKhEGo6zqERqwVJUIrWAZaRFRSXSSGDVdCsqkWrAaJg sKpEaAFVztqhEVhOUiSwmKpHGTYSoRBqPr6hE6slWVCL1BKihu ahEagCkx2xRidQDXqWmohJZCUgN/ykqkTUDXFQiDcdZVCK1YCkqkVrAMtKiohJpJLBquhWVSDVgNEw WlUgNgKo5W1QiqwnKRBYTlUjjJkJUIo3HV 9KpDQnjtcvvfF88YIXL17g4eGBp5cP/qERJOcUUyIFU5RIaW48b176qOJ 8cIDDw9PvP2CCItJI6 4BKmSuyQnkY h/vj6BvA6WjGvNCV/dCVSPg7/snHI Xv7ERQWQ1qegr8sVsNKpJTc Df4 3jKcy7L wsPDzw8vfELDCMmLY9iWeIr/BSR8iGUiJQ8CiUVZvzuH4atRMriDtMybihK cDriBRytQhcZ4mU5vIpzB8fT8X pNqnvH0JDIsmLbcspypwRSl8eB1JSm4hWqClepVIKbmfwgioIt e gWFEp VWkWsls0jtmMnGU5MSKc39xNsA3y PAb6BvIlOJbeo7BhQyroo9SOvI5PJqbQtVKsSKcvt2wB8q8rtm 2hSc4vkx8vSdSn LyL14xsik3MoUCZXkvaRqNQ81d8Vl1f8ZQoSWZmv4tjkS6DasY KM7xsZ37LB8jE4kPD4bAqKqxqpYppxKpFSchPeEujriYfy/a30OOcb Ibo1ByKJF8e51IjZPnKLsuPJI0I5Rjy1YxBP4mUkpcQrjbOqGr GKUmL4FVQOPFZ agJE8NWIkvj9irjW/o LNsHo1LIKZKo3odlmS5OjSAsMpns/LIjXUTIa8LjslDHVtZOG4kMDg5Wva VbbNRpOQU8kW6FUERERZJcna 8vgrIS3iFUHhcWT9TlCiEqnYd5F8uMyysQ4MGTKM4cPtsbe3x0 H2GjWBOWuO8kv4Z75t2ET1vaDh4eHKln/sf5KIq6wcP4Ihg4cxTBm3LPbhw xxmrSAbVf8iM8uIOPdL5zY6MpU54lMHPcdY6csZOslb2KzCikB/miJlEReY9WESuMYPgx7p0ks2HoZ3/gsCksMLZESIq tZuLIIQweNozh9oq829sPZ5i9E5MWbOWyTxxZshXLf6QUxD7Cz XUWux5GkZZf cCrflswrERKiPxpNc4jh6qN 5JPbLm4QVoQy6O985m96yGRqXkVDmjqowadJVISyU9rJ E4dDDDhg2X70 y7dJenlNn5m 5hHdsJgUqtAXEPt7L/Nm7eBCRSl710VZTIkuIvL6WSY5VM3Oev4VL3rFkqgKSMYvj8b4 FzNn1QP6hQYuQalQiS6JusG7yKIZWdQxwns Wi17EZBbI93NZruXj2r QOTvv8yG54rZQLYksieLG imMGjqYoZVzO8qZ T9cxCs6oyy3SCmIe8L hXPZee8Dycrk5rzYx/Gn0STmqCdrChJZEnWTDVOdGDp4aNkxVrYdy8d6Ac/oDPJLt2Ml3ycHFjF3513eJ Uq9rWcF yfM41NV9 SkK1 vMaRyBKibm5kmtNQBg tfJwbhbPrD1zwiCJdNQhZvp5ycPE8dt4JJzFXGW uBwfmTmeTexif1IxBP4ksIfrWJqaPHqYmzs2crxxn/FMOLakYZ67HQeZN34T7m0 oCdPAEimLe7M87kF2X74Pj5royubzL4j8nK/cB6U8O7Ial50/E5aQozoWH1qwjI1XXhOfpX770EYiXRYsrmL/nIjr5nO8iPhcYZtFWkD8s8MsddnJz2EJKHbJXDwPuTJz42VC47 JUcVZ vxASqSRSFLiVfg3q0em779mwbTd79uxh967trF/gSKdmlgxacYN/ c9vTU8iX 3ErtG3WDkuY/1WRdx7du9i 4bFjO/enCbWkzjy/BmnF9jRpYcT8zfs4cCB7Xw/riftbMbj9iSWzELpHy Rr3YxuEk9rEYuZZ18HLvZtWMDiyf0oEUTa5wPexGfVUSz5s1VO Xjz5k3l7VnLvyWE7B5Ck3pWjFy6jq279yjzvoMNiyfQo0UTrJ0 P4RWfRZFUSk7UC35cPgTzvzbkuxOhfPqdN7/KgRhaIkP2DMWsnhUjlqxjyxdxm2E98SAecZkUSUGaE4XH2e8Za vFXGo45zqv4bLUHhMpx6y6RIbgNa0Z9qxEsXruF3XtkbEtz2hN zM2smHvAgNrMIqTSHKI zrBhqwX83HMOxV3FqD/6V45P9Xb1KpIRQt E0a2CFw K1FZktmUhPcxmzA7yIKWUWjcfZFQxr d80HH2M4LjqM5PFVJOVSEnoXhxaNMTKYRFrtpQdA3ZsWMLEXhY 0tZ7A/ufRZBRJkeZE43luJcMtv6HR6CMExlZ8c6iWREpC2TfCnIZW9ix c80OF3C6Z2AuLptZM2PeM6IxCpEjJifbk3MrhWH7TCKcjAcQo3 yQzrs1m6ZXXRKWXM7BKCTYFiZS83s9Ii0ZYDV/A6h9kfGXb8UaWOPemZVNrxu99SlS6bKyyfS0ar/OrsG/1Nxo5HeJldKZiX8v4iTlWLRm104eI3xmvcSRSwuv9jrRsZMXwB av5odzxYuMSZ3pbNqPTODceR36mUHaci/HiwmoHWv 9EaMO hGVqZSajOvM62jJqB3efPxcdc70k0gJrw840aqxFcPmr2Jz TiXOtNHHuceHkeUi3PNCNrI4jzgS6QyzozrLnRqNYrtXh9QE6a BJVLC64OKuC3sl7Nqc7l9cONSJvVpRfNOY9n920c F5aQG ONc09LGjnuxzsiQ/XhzrVbP0Zt8 B9WtVsZbuGNhLZa/JmXFZuLrd/bmTppL60at6Jsbt 40OaYptFmkuM90XWjmzLPxo7ss/rIxnyEDK4Mb8LrUdt5cW7NFWclXZRhEQqicglsmELJpx5S1LpJ y gMDWII Ms WfbOfyP//VvKoExmUqkXCLNGH34dcVPuEXphLvPxfofDRmxbgl9zVrhsO1X 3qfLKo/FpIceZ0LrJthuekZ0erGJSGRTRh8MKfcpt4j08KvM6/JPGo48QGB8Fk2NIZFNnTj4Kp7yHwCL0t9x1aUL3zYawYHAKMI8 L7NjriMD 7Tl2z/Xr0IipRR8juVtkC eHp74hURWOK1nFIls6sSB4Lgv43a1oV6jEezzjyMtxpsrO bhOLAPbb/9M/W/kMjfj1tfiWzmtJ gWOUbqXxfKyL93TXmd61PoxH7eBkRhueVnbiMGkiftvX4c/0xHAuuKJG/x1XWpVYS2XwU wJjKX1flLWX5fra/G7Ub zAXr8YUmN8uLLThVED 9CunozZ0UoSKaUgPZZwZa59X1XMtazPmpfI5oza6090Zrk3oKI M3v 0gB4NGuPg5sOHN16473LFaVBf2tX7C/X1lITLchAAABy3SURBVMgWo9x4GV32JghFZLz/iYU9GtLYYQ8 USnE rqzy9WJQX3bUe8v9Rl9uLJEBhEc8poAX1 C3ieSVVjxtJ/pSKQ5jnt8iVK8u8q2GjLeX2dRr0Y0sd NV2Q6BfG XN09n9G2Mr7/Sv0qJfIFgb8zXqNKpLkju30iKe wRRkfuLG4N42b2LPTI5zX3tfYs2A0tn3bUf9f6zPqQBUSuf0ZA SFvCJTnLKFCzgwikRaO7PKO DLOJX1oYjacnS9K4xyjjLNB1RL5NICQN4H4 QbxPiGTgnLncA17OlspkRaODHYLqyjYRRl8uLmUvmZmDN/ iOcP3XFbOIbuTf DBo77vpTIrU/wf/WGQD8/gt4lkFlQXOEDvzYSOWjjczw fC4nf0VkfLjJsn5NMRu nWfvPyMp/sTLn9xYOMaOfu3r828NHNlbhUQ fvmKN4F AW9IyGzgOJyxVIhkfI3NlAnkVCI59ru1G88iv/xP/9v7ZFIWQXAcx196n/L4NWH2b7lJA/ffyZPeQmGNPsXlnRuSPelD4hIK6Rps2aqsYWFhSmp1Nx/EnklsrJEyj7Ze7G X0O HbIT/7jMGpNIpDl4behPo3qD2eEfxr3985nlspr9xxbTv4E5E0 Wr0QW8cnnCruWz2bKZGcmjHPC0WkSC3fdIjQlV77D1ZREyuPe2 J/G9Qaz3S GuOeHWDDLhVX7j7J4QEMsJpSvRCri3r18DlMrxR2ijNvwEinLq TebBjah/uBt L65y4GFs3FZtZ jiwfQyGJCRYks sSBjcsqxrfzFiEpOaoDmb4SKWPmvWkQZvUHs80nmrgXh1k424V V 2TMGmMxoXwlsohPvu7s b6U2WgcnZxZsPMmr5Jz5JVfk5FI2THAZzO2TRtgt8WL0LuHWDx HOa6BTWg5Xr9K5JcSKcutDz/YNaOB3RY8I2N5cXQxc1xWsffIEgaZtWR8pUrkpGUrmTltGs5jn XCaMI8NPz4nMr30miwwXYmUjdWXLUOa09DuBzw ppHpfYwlc11YufcISwY1xXJ85UpkC3p/56oa72jZeM88xz0wlc/Ka NqWiJl277v1qGYN7Jl0/Ng7h5ZxjzXlbgdXoJts1aM 6ISaU7vMS7MnDZdnrPRE ay4cwzPn5W5MxYEimPc9swRZzPgirEade8FeMqVyItejPGZQbT pjszdvRoJsxdz5mnH/msfAOsMYlESq7fduxbNsZ2wx3ObVuCi sK5vZsROtxlSuRvek9eh4z5GxHI2O7/vRTPqTlqa4R108iQZrrxw6HljS23cDj8BQkOT6c N4F1xV7OLxkMC1aj/uiEtmy92jmzpjGdOexjB49gbnrT/PkfZrKJYRE/p5ESgtJj3jKdofm1OuyhP/nf/ HSrRMqxLZkL4LT3Pt7iMeP37M40e/cv/GWXZMsaFJi8Fs/jWajHxJuU8kBUTf/55 zdsx VQQCTklJlKJbEjfBSe5Kh/HI369f5OzO6bS1cwcu00P5aeMjHI6u1FfFpx0586jx3J j369z82zO5jazQxzu008iEzknb8HgREpZEeeYKx5K5zLSaQ06y WHnLvTedB0Vu04yNGj 9k4pQfNWgxj6 Mo0oukGEUiG/Vl/onKce9kWremmNtt5H7EZzKjAvAIjCA5O5KT41vS2rlMIqXZ/hye1IPOg6axcntZ3M3Nh7HlURTphVI9rolUnM5u3NeV41fu8Ei 2XT5W5PTczml0b2aB3YZ7RCS8w98jkIjkbCJPjseyzUSOqyqRU rL9DzNk4hJWbj g4Dq1J/L4fovkc6Hi47BWEtm4D67HrlTM9bmdTO/RDAu79dyTyUAps6xITk2wpM3EMomUMTsyuRddBk1jxbaymFqYD OHXyNUMdV8JbIJfVyOcvnncseAm fYOb0HzS1sWXfnA5/eBeAZ9JHkrEhOO7em7UT9JNKszzyOXPq5Ym53zaBn85bYrrvD 9RMogI9CfqYRFbkaZzbtGViJYns2c OUS4b2bV3F6sm9cHKZizbH34krUCRW9ORSDP6zD3MxZ9/K9uOd82gV4uW2K69zbuUfApiAvEK khSZiRnJrej3YTKEtmIhs2746gab1862HxH27GHuP8 Fdkl1kaVyKZ9mHvoIrd/K3ecO7 Lmb3NaTloDbfexvEu0Iugj4lkRv7IlPbtmfCFRDahkWwM8zawc 8uVk/uR0eb79h67z2p VIMIpHN jDn4IVKce5mZm8LLAet5ubb2ApxTrVqz4TKEtmkEc27jWTehp3 s3bWayf06YvPdVu6 S5FzNopENutNl3lnOH9bto0o3ocf3DzP7ll9sLAcxKobQbz09i LoQyJHnW2wmlBZIm1o1LwbI euZ6fbLlZP6U9HmzFsuRNOivL6e20kst/8M w/f4vfSo 9D25yfvcs ra0ZNCq67xJykNaGEOwdxAfEjOIPDudTh3GV5LIzjRt1IxuI eyfqcbu1ZPoX nrozZcoe3KfnyKqmQyPIS2eBb2tnPY8mqdaxfv551q5fjMr4/bVtY892O3/jzf9czUYn8Gw3b9mHg4GEMte1P757d6NarL/3tRuO65y5hsruMVUXFIpIDLrFyaHusHNZx622a/ALbP/zGGnklUjaO3gywG0b/Pr3o1q0XffvbMdp1N3feyO4mN/yNNfJrIv/ekLa9B2A3bCi2/fvQs1s3evXtj91oF3bfeU2qbMXKH0nsqS8lMt2HU2tWsPvWG5J zZafjpGR4b2RgE0smnlJULI0ikVXF3UcR966fX5OSW 5USEkcpytLZLoPp9fK4n5NUo5sWSmZ3psYJItbKcn6ViL/0bANvfrbMWyoLf379KR7t170keXUZRe3Q1PIVZ0XKSHu9IQvJD Ld5wynn7wri09WWTNrxcQTIcQrr0nVSiL/2ZA2vfqX5bp7N3rJmDm5sOt26BfMzlSWyHRfzqxbye6boSSWMv P5gcHNWjHheDBxyiv5a14iv6Vhm570t5MdAwbQp2d3uvXqQ387 J bJKrfJZZVbSuL40QAS W3D1vRU5nZAudw6zdvJrVfJ5KhyCyVxPzKpCokcvuAoD99 pqBEQmb4JeZ1s6DP8lu8TVa8QZmORNajYese9LMbxoA vVTbsdO8HdwMTiJHdvFx6U9JPGerlMgmtB25g/thnymQyMZ7GZfuLWnyH51Ydv0NiflS40pkvYa07tFPse0P6ENP 1bY/lx03gknMLlKdOi2JP8fUqiSygxltR2zn3ps05Riu4NrDkj5Lr/M2Md8wElm/Ea169MNWdjyuFOf2G0FfxlmFRHZs2o4R2 /yOi0fiSSTd1fm09OyD0uuhZCQJzXONZENGvG31n3oZ1tpH7R1Y u726wQmZKvOVJyf3u1LiezajXYOW7kTmkq bPt4586CXq3os QqIQmKG C0kchuw6fRva t/Nhbts3a4jR3Gz8FJpBVfpulhPgLM6qUyGbtHNj6cyip RIkme9wX9ib1n0Wc/XVJ/kNkEIilTu 4saav9HEehBDHBxxdHTEcdRoxk11ZfXeq/jGZlO/sZmJSuS3dHD6no073HDbsZ55w9vx7T8sGbrqKq S8lSn/ZDmE 9zgXXfdafzwJnsefCOdOVpFNOQyHp0GLWcjdvdWO/iQLt6/8Ry6Ercg5NUsmHYR/yU3ljTgVHLN7DdzY0d6 dh374e/7QcwoorwSSWFzGgKomkOIfE1578evcGl86e4NCeraydZ4fFf9V n1OFXxGcbqRJZvwOOy0rjdsFBFXcQCZXilolDZYlUxX1PGbfbN ta6yOJuwKhDwcRl6V JbNDBkaXrt HmtkOeU6v632I55HsuByZUkAyoSiKhODeRJ7/dU3AtH99BRXyy3VcriWzQgZFL17NNlusNLjhY1edby8EsvxRAg lwKS00AmflQWSIpziXxtRe/3rvBZVmu5TENpuVfG B4IJAY5cWWNS RDekwYgnrtsmOARtwGdGBBt 2ZPDyi/h/KieQsuEZSCIbdhjB4nWy3O5kg sIOjT4lpZ2y7jgH092OYFUrLJqiVz50yuiS68zLEng/JQ2mDvuwjdKca2l6UhkIzo4LGLtVjc2uDrSsWE9Wtot5fzLeLI rvBnL KqRyA7tGevmTWS58V6Y2o6h//6vOO7wkt9wY9RKZOMOOCxay1Y3N3ZucGVkx4bUa2nLknN xGWVCaQ8X okspMVY3d7EpGuvC6qJJGL061o6biDgI fDSORja2wX7imLM5OjRRxnvUltqo4q5BIa6ux7PaIoCzMi0y3a onjNg8 fC4xjkQ2saLliJWs2eqG284NzHfsROP6LRm0 Ed8YmQ3Z5YdW6qUyG52fLfzOR8 l7G9NLMjliO38eK94sYWbSSy95QtzF 9RbF/znfEunF9Wg5axI/eMWSWD0YeljqJ7ELH73by7MNn5Sn1EhIvzaKT5Ui2Pn P7B4gIZHKvCok0oyhm27yyDuQoCDZBd9veBeTSo7yOWum JxISeUba6QFJPpfZMkAS1oPcOW0b4LiU7I0h4jHx1k6sjtdh85 l98 hpOSVVapMQyLLroksSAzg0tKBtGo9AJdTPnxSfko2ikSWu7FGW pBIwKWlDGrdmgEuJ/GOL/v0KNtUqpJIaforrv4wh3Gjv2P8xMlMnT6LeTPtaPlfDXA6ZESJ LHdjjTzuy8sY1LoNA adxCuu4kGrKomUpodwbctcxlcRt6EksuzGGikFiYFcXm5LmzYD mHfCq9IbV1USKSU95BpzZkwvx3Uwln9twKiDQXLJleVEK4ksd2 ONtCCJwCvLsWvbhgFzj MZ yWzyhIpZ7Z1HhPGlM 1MqYDAX gRJa7sUZaQFLgFb4f3I62/edwzCNG/gQG5aHOYBJZdk2klIKkINxXDKFd2/7MOfaCmEzlnZ/KlaqrRG5 EEZs6XNYpJn8NKcdTe234B2huCHAdCSy7MYa VhXDqV9u/7MPvJceRe6iq56iezYhenHA4gpN97rc60Y/Z//B/vNnnxIKzFuJbLcjTWybT/o6iqGWbWj/6zDPIvKQHl1iHwgaiuRnWyYduwl0aV3IUozuTGvIy3sN P/Ic0wElnuxhpZnMHXVjO8gyLOp1XFWZVE2kzjqF U6qZDaeYNXDq1wH7jc96lGkkiy99YIy0gOfgaa w70r7/TA49iSRdeYmGDHCVEtndgWlHyu4yR5rJTdfOmNtv5Nm7VPnlaN pIZNmNNVIKkoP5aY09Hdv3Y bBJ0SkF6iqzootV51E2tB12mF8IktvjpSSeXM XSzs2fA0nBQhkWU7vvoba8qWqRUSKQtXmsv7n2R3ZDem6 wz CdmEOt5nAVDbejuuJjDv4TLL Qu98HIRK6JLJNIZBckv7/O0n5NaWwzi9MvZZUrI53OLieRCnzvub60P00b2zDr1MsKFaovJ VJKxuN19De3YsTqw1x58By/kA9EPtvEwCbNGC2TyCwjVSLLSaQi7g/cWDaAZk1smHnSl0/ZZR8SvpRIWdwbGGDRgRGrDnFZFfdmBpk1w0lZ6dP3dHaZRMojJ PfDTZYPbE4Tmxmc8C1fsapCIqUZPNkwkDk7DlSIz1YW34EgYpV vZLpKZCmzm98PooWZDTNO BBfiVlFiZSS8WQjg1p2wGHlQS7df47fq/dEPvsBu2bNcdpvIhKpGBgfbq3A1twMm nH8S7/ocJAlcgyiVTkNu/jLVbYmWNmM51jXrEVTpepk8i5p7z4kFYk6wBpXjC77VvSYeoZg uMUz88zRYmUHZvyPt5m1WALmspkxbNSZUddJdKqJUPW/8K71NLxvmLPCEs6/6UBU08GymXaqJXIchKp4P2Rn1cPwbKpDVMPvyBa9rgteSZkHqz mdHZHS4asfUh4StkY3Ea2ptOUk7yKyTa4RJbFORTLZl0UcWZUi rMKiezUaghrH7xFEaaUvFd7cWzTiSnHFQJslGsiy0ukInAi7qx hWKtmdJlySC7qpQXAKiWyWz GrLlHWHKhPAvSvBD2ObWl05RjvIxSPIpLN4mUB0NexB3WDm9N8 y6TOfgsUv7IL/mK5P ok8gutB6ymntvkpFHJc0jZJ8T7awnc0wp6aISqaRYpyRSdkDOf sP52TY0aNyLJadPs2pEO5q0HcaiQ7fx9A8mNDSU0NDXhMdnUlB sKs JLC R8kHw5sIcujVsQq8l7oSk5GFWI4/4kZL95gJzuzWiSa8lXAlJUd2JVpVEprjPoHUDa6adfsab2E9Ev 37Bpe9tafqf3zBsr6xiVmKcG2sqSaTszS37zUXmdm EWa/FXA5OJrf0CxG OJ0tJeXqTNo2tGbqqSe8lsX95gWXVtjR7D//xrC9gcRmluh9Y01FiVTkNOyiCz0am9Fz0SWCk3JVp0m uCZSmsLVWe1Yffk oar4BtPsv/7GULcAeXyy3VcfiZQzC7uES88mmPVcxKWgpArMKktkytXZtGtk zdQTjwmNkTHz4PLKITT/698Yuuel6tRszZ/OLleJVB7TpNlhXJ7fCzOzniy8EEhiTulpMsNcE1lRIhW5fXt5P r3NmtJzwQUCEnJUd5Wqk8i o5ey75YPr8OCeHRmIf3b2DD9uA xWYpYTVMiZWPN4e2VBfRp2pSe88/hX26sak9nWzXCrOtM9t70lo/38Y LGNDGhn 2msFRrxgyi418Y00liZRt zlv3VnUrxlNe7hy1u8T2crLv9VKZIfGmNnMwO2Gl3IMixnYtiv TjngRm1lsFImUxxkui7M5zXq48qOf7MOnYiOXx1mFRHZs3BSbG Xu47hVKWNBjzi4eRLuu0zjsEUVGMcY5nV1ZIuWbSThXFw gRbMeuJzxIU4ZeJUS2dWGpl2ms/snT0LDgnhydgm27bsy9dALomRBa/mcyLJKZOkBIYfwq0sYYN6MHvNO4xOXVe5eCXUS2Rmzpl2Ytusn PEPDCHpyliV27ek69RAvIjPk7YVEKvnWNYmU7XifXx5mQvtvad alA3////4Pf2lkzYDBw3EYMYIR8pcjsw6 ID7DhB/x89mfIxOtqNdiMBvuvuObhk1V16Ua7GHjlSqR8k1Cmo7/EWc61G/B4PV3CE9TfOPHlxIJBeHuLHPoSQ87JybNmMu8ubOZPms8vRp/Q 81j4hIK6KFubkqbpnA6/cjQf6w8S8kUnbUSsf/6CQ6NmiB3bqfeZum/JaELyRSEffyEb3oYSuLe065uP9G79W/8TGtCHMLC1XcISEh1Q9borg7 wuJlIcYwLHJnWjQwo51t8NIlX9TRhWVSAp4d3U5I8ZOxPmL H7lg7Kio59EKpgFHJuCdcMW2K29RVhqGbOKEgkF767yvaOM2Sh VTDNmjad3k7/Ta9VD3isrNKYgkbJjQHrgcaZ2boS57RpuvkkhT/YYSaNUIhWbhjQ9kBPTutDI3JbVN16TIl hbJVVXxM5esIoHMY64zzeiSF9 zB87gF 1D2bRomK5HyzSaQE9NtaGxuy6rroSQrx6pWIju0xrrX4Erj3Y/rKX/eK/fTmqxEyjMmTSfo5Ay6NjFn0Mqf5NfQy/RdrUR2akPnXnbyMUwcP1qRszn7 OVdqnzbMsjd2eVOZ6sOOLI4T82km5kFg1Ze45Xyw6c6ibRu25m edg6MdZ7I NFD6dtnOHP2PSQ8NU9 WrhGKpEKwGQEnWZW96ZYDFzB1eBE YfUKiWy20A697TDfqwzMrZD /Vh Oy9PAhX7rf6SqRsm80I5vTsHjS1GMj37kEkllUZ1NxY04V2nXt gaz8W54njGT20H32Hz2bv/bekKB XJCRSuZVKEjw4t/cgN4Jl10CWFvVVm7D8F1M8nV2S5MXFffu59jKZ7PIXtcgiliTi fWkfO7ZtYcP6Daxft451FV4b2HsrlNSc4j/8OZElSd5c3HeAa35JlcYhIcnnMgd27uGCVyz/MKhElpDkfYn9B67hl5RV4ZogOb4kH64c2MmeC7JP2QqJlGYGcf 3QEW4GJpddUF SyYfnP3HSbRubN29l9 GLPAgI5OHpfZy8Hybna9i7s6sR90FZ3J7EZCi/7k6aRdCNwxy5GUBSlvJ6NVncL65zcm9p3Bd44B/IwzP7OFUat64SWZKEz UDHLjmS2Jm5etvJCT5unNQllNP2eOnZGYjJSvoBoeP3CSgXC5K Mj9w/tg fti8lV2HZfEF8PDMfk7df0OK7PqGalciS0iWbUcHruEre/BwpV1ckuSL 8FdcmbR6UqJlGYRfOMwR28GkFiJ2am921Qx3VfF9JoUZaWhJiW yJNmHKwcPctXnExlfDgy/q4fYtec8HlHpiq86k43r5hGO3vQnodK1i9X6xpqSZHzdD3Hwqg fMr7MbbLfVQ7v2iP/irrPyq/Sk2YFc voUW76J6iuz8wPu8tj719xP3WAHVu2sfvYVZ7LZKTcTTmmIJEl yb64HzrIVe94Mip81amEZL9rHN7txvkXkXwulUhpFq9uHeXYjZ dlfArCuHfiNDce3sf91MFy400hNk quunCOBJZQrLvVQ4fuop3fLr8ETfyHUf5jyT5JT8d2Y3b edEpCkkS5r1itvHjnHDL75smyp4y/0Tp7n 4D7upw yU5azo 48C08hV/meqZ9Elih4HrqKV5y6OPfgdq5SnMcVcZZec1jw9j4nT1/nwX13Th/cyZZtuznq/ozwlFwVZ8NKZAkpftc4cugqF31S FxhG5G9Dyfjf/0oe9zO8exjqvysVsjPpzl w5e4ctcmPjhzlev37 F hA7tyrYPn2bXMFHtDmdfeFZNLGfFU85KMu3hGT/6xzb48a5Zx9JVUmklKyQnzlx/Aa cZ Vx8cC3j44xZnr97nnfoZDO7eybfdR3J JTmn7JICIZFldDX ZooSqTHoai7wR99YU80wMeyNNdVdq/7LGVYi9Y nuj3ofE1kdVdggOWqV4k0wIq06KImJVKLsDQuWi2J1NiL4RYwB Yk03Gg092QcidS8XkMtoZ9EGioKzf0YViI1r89QS2gjkf9/e3aW2jAMRQG0S88eMk ryzzsoYV uMZQnD5ZqoPORyGO/WS9oxQu0lDv7BtHiOwTat0XIlsY//RRiCwLL0TGvIXImFu3Sojsioz7WojMuz5CZD7fj3xD/4wsRP5Y/NcnIbKsvBAZ8xYiY27dKiGyKzLuayEy7/oIkfl8hchEW8fZiYA95Y6ze4ASbjvOTsDrlDrO7oAUvnScXQbc cfZwzo6z/2BpJ/IPWJketROZCfaXYe1E/gLT87WdyB6gF2/biXwRaiSP2YnMuxB2IvP52olMtLUTmQjYU24nsgco4fZyufycT Cbff9frNWGk4UpXq9Xo5vRKd3YiX1HK98xms2l N6fTKd LMo283W7fYv673a6Z5/F4zKQx/LBjDJH7/b6xPBwOwzddaMQiIXI6nTZYz ezUGtlXjObzZreHo9HmZcG3jKfz99int3WFotFM /7/d69Pdrr9rxvt9to52liwwi0w /lchlm0IRR1ut1839zPp8TRlJK4P0F2uH3nQPbGFeiSIgcY PmRIAAAQIECBAgEBcQIuN2KgkQIECAAAEC1QoIkdUuvcYJECBA gAABAnEBITJup5IAAQIECBAgUK2AEFnt0mucAAECBAgQIBAXEC LjdioJECBAgAABAtUKCJHVLr3GCRAgQIAAAQJxASEybqeSAAEC BAgQIFCtgBBZ7dJrnAABAgQIECAQFxAi43YqCRAgQIAAAQLVCg iR1S69xgkQIECAAAECcQEhMm6nkgABAgQIECBQrYAQWe3Sa5wA AQIECBAgEBcQIuN2KgkQIECAAAEC1Qp8AR6GW0VUfFyeAAAAAE lFTkSuQmCC

Ygorcs
08-07-20, 07:07
https://imgur.com/a/FS6p8md (picture)

Therefore, what the study really indicates is that R1a in Iran is not either M434 (common in Pakistan) nor M458 (common in Europe), but other clades of M198. You're mistaken, another reason why you should look for other, preferably more updated, sources to substantiate your views.https://www.eupedia.com/forum/image/png;base64,iVBORw0KGgoAAAANSUhEUgAAApEAAAFcCAYAAAC QteU8AAAgAElEQVR4Aeydd1RUd97//Wf3d559suum7LPZjdGosSsgFjqiIooFVBB7izHGbtSYxF6ixpZ oLFETe%20wVFRuCgg1EBUR67723Gaa8f4c2DohS7jAF3pxzz9z 2%20ZbX53svr7n3zkwL8I8ESIAESIAESIAESIAE6kmgRT335%2 04kQAIkQAIkQAIkQAIkAEokBwEJkAAJkAAJkAAJkEC9CVAi642 MASRAAiRAAiRAAiRAApRIjgESIAESIAESIAESIIF6E6BE1hsZA 0iABEiABEiABEiABCiRHAMkQAIkQAIkQAIkQAL1JkCJrDcyBpA ACZAACZAACZAACVAiOQZIgARIgARIgARIgATqTYASWW9kDCABE iABEiABEiABEqBEcgyQAAmQAAmQAAmQAAnUmwAlst7IGEACJEA CJEACJEACJNDC1NQU6pzi4uJInQRIgARIgARIgARIQMcJtGjRo gXUOYWGhuo4MjafBEiABEiABEiABEiAEskxQAIkQAIkQAIkQAI kUG8CLR49eoTGnj799FPF1U5eiax3jhhAAiRAAiRAAiRAAlpHQ C0frOnYsSMlUutSzwaRAAmQAAmQAAmQQMMJUCIbzo6RJEACJEA CJEACJNBsCVAim23q2XESIAESIAESIAESaDgBSmTD2TGSBEiAB EiABEiABJotAUpks009O04CJEACJEACJEACDSdAiWw4O0aSAAm QAAmQAAmQQLMlQIlstqlnx0mABEiABEiABEig4QQokQ1nx0gSI AESIAESIAESaLYEKJHNNvXsOAmQAAmQAAmQAAk0nAAlsuHsGEk CJEACJEACJEACzZYAJbLZpp4dJwESIAESIAESIIGGE9CgRMqQE eiO65fO45JnOHKLJW/0QpL4HLevXsIljwBEh0UgMiIc4eFVp4jIJOSIJZBViS5GjPct3 PNPRL6o6pYqu3GBBEiABEiABEiABEigQQQ0KJEleL5rHMz1O6L jwJW4HZMFkVy5DyUI%20G0KLHt2ht7U7zF/UD%20Y9zKEoWHVqZf5ApyOSEehUmxx0FHMsTHCiLV3EZslhtIm 5Qo4TwIkQAIkQAIkQAIk0EACGpRIMR6vscRnn7yPv/%20jD364FY0ssVIvSgKxe7QeWrX8C1oOXYszvx/DqePHcezYsbLp6K65sPrsX%20hg/zM8E3JRUhlaHIzjX5vhs5b/g25znRGRLqJEVrLhKwmQAAmQAAmQAAmoiIDGJbJtz/6w%20Pw/GLD2LmKyX1ukJGgfHI0Ho1%203f%20Dfo3YiKCoVhYWF5VN%20 NK6ttEWP3hPwi1sYssSyClEUIeTkXNjYDINF2/fRayElUkXjhMWQAAmQAAmQAAmQQBUCGpfIdiazsHKyAToM/RH3YrMrrihKEPKbE4ydVmJB///iM4dfEZGUV9FwOfJ9dmGsoQFG/%20SK8Cyx4nlIUdgpzLMZjK/3HcB887Yw/eYqr0RWSTcXSIAESIAESIAESEA1BDQvkaaLcOrw1zDpZoefPOO QU3pfWhKGg%20NM4LT9CjbafY72jkoSKY3FuTkm6Np/MS4GpKJYWgFCHI4zC21gPfM3PAjzxKbBHWBOiVTNKGEpJEACJE ACJEACJFCNgBZI5De4%20uIcvrHogdHbHyE%20VwJJ%20B%20Y YDIG2z19sHtcpyoSKX65Bw7du2H0Dk/E5JZU3MYuQcS5RbAZ%20AV2e0Qip8AX22wpkdVyzUUSIAESIAE SIAESUBkBrZDIaxHhuLbUHHpjfoFXQjZCD0%20CyZhteBAdisO TOitJZDF8tg5FJ/1JOPg8EQUVVyFLoi5gsc0ATN15DxHZYshK/CiRKhsiLIgESIAESIAESIAE3iSgHRIZmY7kG4thpj8Ou70fYc8 kEzhs8URsZjyOT1aSSIkfdgzvBP0ph%20CXXFDxLKQU0cenQf% 20Tf6ONngks%20w/EwAFG6PDR3/DPNvowt18Ll9gsFPN7ft7MPteQAAmQAAmQAAmQQAMJaIlEZqA4/ToWmvTExLXLYKtvj588YpAtSq4ikdLow5jQtRNG//IcCbmVD0PKkPbkT%20zYuAYrV6zEypUrsXL517Dp8CHamI7DvN Un8SwtH68/991AUgwjARIgARIgARIgARJQENAaiRTJ0nBlrhH0urXFJ1brcC 8mGyWylCoSWeS6FEafWeI712hkKlmhpDAb6WmpSElJKZ8S3LFm YDsYfX0c3iGpKJJUfgWQot%20cIQESIAESIAESIAESEEBAeyRS LkPKxdno3epjmK24i%20isEsirSGQOEo5OROfPHfGrfxLy3vVr hnwmUsCQYCgJkAAJkAAJkAAJ1E5AgxIpR26MH7x9I5BRXFL2fK MsOwovvJ7gZXwexNLShxjFSAl%20Cu/ABBSJJShOCsTTp0FIKhSj8mZ2jV2UFyDupTd8IzJQVPIu26wxm itJgARIgARIgARIgARqIaBBiaylZdxMAiRAAiRAAiRAAiSgtQQ okVqbGjaMBEiABEiABEiABLSXACVSe3PDlpEACZAACZAACZCA1 hJoYWVlhcae/ud//gctWrQom/r27dvo9TV2f3S9/JiYGK0dkGwYCZAACZAACZCAbhBoUSl3fC2X3ObAISgoSDdGJ1t JAiRAAiRAAiSgtQQokRVXSJuDPFb2kRKptccjG0YCJEACJEACO kOghbu7Oxp7atWqleJ29vHjxxu9vsbujy6W37p1a0UOKJE6c3y yoSRAAiRAAiSgtQT4wRqtTY1qG9alSxdKpGqRsjQSIAESIAESa NYEKJHNJP2UyGaSaHaTBEiABEiABNREgBKpJtCaroYSqekMsH4 SIAESIAESaFoEKJFNK59v7Q0l8q1ouIEESIAESIAESKABBCiRD YCmiyGUSF3MGttMAiRAAiRAAtpLgBKpvblRacsokSrFycJIgAR IgARIoNkToEQ2kyFAiWwmiWY3SYAESIAESEBNBCiRagKt6Wook ZrOAOsnARIgARIggaZFgBLZtPL51t5QIt%20KhhtIgARIgARIg AQaQIAS2QBouhhCidTFrLHNJEACJEACJKC9BCiR2psblbaMEql SnCyMBEiABEiABJo9AUpkMxkClMhmkmh2kwRIgARIgATUREDlE ikJu4GD5x4jIbcYsopOdOzYUfG7zaGhoWrqGqtRJvA2iZRlBMP z5lVccn6IiNwiSJSDSuclSfBzc4Gz80Pk5hWVrkB2tC88b7vg% 20u0HCEzMg1gqV4qSoTDxJR663sDN%2076IzRZBUrFZXpSBhNg oREZGICJCeYpEVFIORJLKEaNUHGdJgARIgARIgAS0koDqJFKWj oigOKTeWQ37%20cfg5DoPgCiCRyUCI1n/u3SWSJ7x5MHtAbXbvaYPXtaGSKlIUQkAT%20ji%20t%206K74Z eIiAiEz5HvMWGwFfoPGgxrCxOY2UzBxqvByCiSlglm4r1dmDvK GgOsB8LC1BTWE9fjclAGCqWA6MkuTLcbABMjIxhVmUww4JszCE 8rQNXaNc%20NLSABEiABEiABEqiZgMokUp7tiV/nToSTjQHadDOHzYChmHPAG2l5JZTImtmrde3bJFL8ZB36t/sE77/3D/T94QaiMsVK7ZIg%20LexMGz9T/yl5VA8O7kck02NMHzpb7h09wEe3T2N9U5G0B/0PS6HZaAw3R0/jjKB1dQtOHnjHu5d2o6pFj1h891FhKQXoSTBG85njuHQH3/gj7LpILZ/3Q%20f/etzDN96D3E5ynUrNYOzJEACJEACJEACWkdAZRIJcToifM5h%20 VADtG3dBaPW/ol7welltyh5JVLzeX%20nRH7eE/1M2%20O/1mvhGpUFhcpJQnBgvBmGWHZFy4/tcGG%20CXoYfYE/vGORX3qPWlaEROdFMO1ojRW3IxB2aQnMug/DqpvBSBfJIBdn4OmWkehuNBd/BqWgQCJGUWEBCgrKp7xoF6wdYYA%2047bhVlAGRFVui2ueGVtA AiRAAiRAAiTwdgKqk0jIkO66Dg6OS7B12WhYT92FB/E5KJGDVyLfzl9tW94tkaaY%20cNEGHQajh/dopFVUt4sSejvmGjuhB/m9kertqPhdfMqHjwJRlqhuOJ5VzlybyyBcbvOFOCG6ts0FH80W 4EpqG4or70gX3VsCykzVW3IlEhsJOAcjz8XzfJPTtORI/3ghGhojPQ6ptMLAiEiABEiABElABARVKpByihMe44xmO5Ggv3H Z7hZT8ctnglUgVZEpgEe%20WSDMsPPE7ZpnqYeRPHojJLrVICc IPTYK50xZc%20NEenTo4ICgkHnK50lOLhUE4PtMYHU0X4UJQNM 7PN0Tb4T/CKzYbpU9Ilv5JgnZhZOc%20mHUyCCmFr2NlcZewqF93WC08A9/kQvAiZAUwvpAACZAACZCAjhBQoUSWXl0qgbhEBrlcArFYikrfo ERqfjTUKpFXfHB6UT/oO2zHw9gcSCSRODLFHGO2uMNr90R0q5BIRU9EsbizdTKMu1vg6 4OPEJuXjnOzeqD9qO14EZ%20j%20GS%20NPIAxnbRx7RDr5BUU CmRYrzaPx4GPUZii3sksksvV/OPBEiABEiABEhApwioViLf0nVK5FvAqHF1rRLpHIrQq0th2dMJ vzyOR1bYcUwzd8RP7hEIPjy1ikTK88NwbdNU9OtpjsmbL8MvqR ASWQGuzNNHO/steB6nJJFhDYuSdmHA1EcqVEip7jZ/tuMJiwD0/j8xRXLdWIg1WRAAmQAAmQAAkIJECJFAhQV8Jrl8hwpCa6YLG5I cbvfoKH%206bC3GEz3CLTEX9imkIi5dl%20OLXcCWa9B2Lm9it 4Hp%20PElnplUQRPFdZoMOglXCPykTFY5Uo8dkImw7m%20OZKG NIqvj5I8nIXRnU1wMT9z5CYX3njW1dIsp0kQAIkQAIkQAKlBCi RzWQc1EUi04rScG2hKXpNWofvhvWE/SY3RGYWI%20XPCon098CV1Y4w7WOLhftu4WVyIUoUn4eRIv7YV OjrT8L%20F4nIL1svQ/yJ6dDvNha7n8Ujr8wXZYg9NhV6XUZiu1cccuiQzWQEspskQAIk QAJNjQAlsqll9C39qZNEimRIvTwPJgZ6aN%20qH1a7RiJTLKuQ yNG4/dME2HT5HGZT12L/hdtwu%208BDw8PeHh6IzStEPmhxzC9rwGGLDmGJ3HZyAi9jnV2 3dFj7G48ic%20t%20DWcIrh9b4b2lktxIzwdYj4O%20ZaMcTUJ kAAJkAAJaDcBSqR250dlraubRMohS76AOX1b4z8m3%20NWRCbE 8kqJHIIVZp/gv%20/9DR%2026YRuPfSgp1cx9bTF6htRyMhLhdeBuRhs1AcmVgNhZay HbiYT8dONEGQWV1xylCXi%20NTu6OjwC57H5yo%20gKOyjrIgE iABEiABEiABtRCgRKoFs%20YreZtEynIi4fPAGyFphRCX3oKWZ iL8qSc8nkcjp1hS9jOE4qQAPHrwDEEP3XHP9TZu36423fHEq6S Cst/QFmdG4YXbBRza8wt%202XcCVx8GITm/5PVX%20MiLkPDyER6%20jEO%206I1f6tY8KLaABEiABEiABEig TgQokXXCpPs7vU0iG6VnUhHyc7KQnVdU8aGbRqmFhZIACZAACZ AACWiQACVSg/DVWbVaJVKdHWNdJEACJEACJEACGiFAidQIdvVXSolUP3PWSAIk QAIkQAJNmQAlsilnV6lvyhJpZmaGwYMHcyIDjoFGGAMRERFKRx 5nSYAESKDpEqBENt3cVumZskS2aNECnMiAY6BxxoCvr2%20VY4 8LJEACJNBUCVAim2pmq/WLEtk4wkARI9fqY4ASWe3kw0USIIEmS0AtEunp6YmbN2%20WTQ UFBU0WpjZ3TFkiDx48qMhHZV74Wj4%20yYEcGjIG2rVrp7i6T4 nU5jMh20YCJKBKAmqRSFU2mGU1jICyRAYFBTWsEEaRAAnUSMDA wIASWSMZriQBEmjKBCiRTTm7Sn2jRCrB4CwJqJgAJVLFQFkcCZ CAThCgROpEmoQ3khIpnCFLIIG3EaBEvo0M15MACTRlApTIppxd pb5RIpVgcJYEVEyAEqlioCyOBEhAJwhQInUiTcIbSYkUzpAlkM DbCFAi30aG60mABJoyAUpkU86uUt8okUowOEsCKiZAiVQxUBZH AiSgEwQokTqRJuGNpEQKZ8gSSOBtBCiRbyPD9SRAAk2ZACWysb Iry0TIg9u47nwdjyPzUCypXpEEyf7uuHmtdHuuYrso/gUevkxAvkhaJUCSHQO/h664efMuHgUlIV8shbzKHlUXiuOew/3BKyTliyEDQImsyodLJKBKAjVKpCwLYY9d4eJ8HY/Cs1FYUr1GKVICPHD7%20rVq28VI9HuMgPgcFFWcN%20RFmUiMj 0FUVFQNUzSSc0SQyICSrGj4PnDF7buPEJiYC5H0XWeJ6u3hMgm QAAnUjwAlsn686r53iS/2TrWGUQ89DF3nipgsUVXpkwThj69sYKzfB7OOhyK1oPRkL8eZZ eMxcsUVRKYXKfbPeHYcK6YMg7X1ENjaWMGi3zDM2OKCkMwiVFX NiuYVh%20LUYnv0c/gRd2OyIJZTIuueOO5JAvUnUKNElvjj4ExbmOrpwXaVC8LSihXH dFkNkhAcmzcc5gZ98OWhl0jILX27J0dh2HksH%20uA5eeDkFx2 XgDEPr9hjpMtLM3NYV59srTBktNBCH54Guu%20sMMgaxsMtu6P/sOm48dLAUgteOMdbP07yAgSIAESqIEAJbIGKCpZJX6MtVZt8ck/30NL4xW4FZ0JsVLBkuDfMLbnp2j5l5YYttMfiXlSZL%206hIHd P0XrCUcQlFyg%20Ifz2zRrGA1bjD3nbsH9/k0cX%202AvgaDscI5ApnF1a80iBB2ZhEGtH8ff%20s2B5fD01C 6C69EKsHnLAmomECNEin2xqYhndH6/ffQsu8yOIeUH4uVVUtC/8AUo7Z4/68tMWSrN6KzJcgJcsbmqWZo%200FrjN3/AnF55ce3NMELl08exv7ffsNvldO%20n/CVVXv8u/0QbHC%20ip%20/GAAT23nYcfI67t69gG3T%20qGP7Q%204FJyKouqnicpG8JUESI AEBBCgRAqA987QMolsDwNLE7T7ZBDW341BlsIiJQg9OB6mNhbo 8o9/Y%20ROH9w/uRmzhluhf4e/o91kZYmUwLG3Lab/7o3YfAnkkKEo/hIWGHeA9co7iMpUFAqIwiEKO4ElwwbD1vQzvN9rAa5QIt%20ZJ m4kAVUQeLtEdkEvCyO0azUIq11CkS6qtDkpwg5PhZWtBbr88z% 20w3/YArie3Yd7IARg4zAIdP2qPCUoSCakYRQX5yM%20vnHIRc2sjHP v0xZgfneH78io2TB6HxYceIyq7BDK5GCkXF8Cky3CsuxuOjDdu paui1yyDBEiguROgRDbWCKiQSNMvv8cE/U4YsekeYrIrzuSSMPwx0QyO38%20B1X8/g8Ouhziz5Tus2nEMK2zaovt0ZYmUwfu%20N16lFkBcerer9IZX 7k0sNm6H/j%204Iiqz8r%20DCJEXluLUV8YY8uVO7JlrjramiyiRjZVflks CSgTeLpFdYT59CcYZdoPd%20lsISxeX32GQRuDo9P5wWjYL/dt8jtHb3HBy6wqs3XEY169thENXfUw98PpKpFJVgLwA8oIX%20 H2GOXrbrcZl/1QUFqQi4uUrRKUXlp8npFl4vnMs9HqMxc4n0cip8bmXKqVygQR IgATqTYASWW9kdQyokEizhSdwcKYJ9EZthWdsDkqfTpJEHMYks zH46cKPsOvwORx3PcfLgDDEpefjwHg96FWRyFJrlCtubQOFCP5 zFkw6mmLh%20SCkFZWbpTjqEpYNt4Fx74nY5RYEj01D0MmcEln HbHE3EhBE4F0SaTHvEPZ9ZYleozbCNTyj7LEWadRxzBgwFhtPr ceo7p3hsO0Rnr8MR1x6Hopij2F6T0NMe4tEyhKuIuHCTNgYWGH OMW/El92hqGy%20GMHXdmHNHAdYGRrDYfU5%20KYUlJ13KvfgKwmQA AmoigAlUlUkq5dTKZGLruDpqYWw0HfEz4/ikCuRIPLoFJg5boG7968Y36VUIkufiSyXwcMT9d%20USEXZIsT d3YFppj1g/tV%20PIzNRUlpWEk0rnw/HIOm7sC4Pc8QmpUP3%201DKZEKbpwhgcYl8G6JPIuHfy6BdZ8x 2OIegcwSCaL/nIkBTptw88GvmNqzCxy2lT4TWX4OkCUcxxdvlUgxgg9Pw56h/4WB3QbcDMmA4g55aRflOXhyZA0WTRoE/TatoDdyLa4EpqHivWbjQmDpJEACzY4AJbKxUq6QSGeEhVzBYou eGLvLCwnZ4Tgx3RwOm%208hMvgwpnSto0TKCxDusgVf9O8F84k/4sKLRBSUGyRirv6AEdaTsPVWMLzTSyCSlsCfEtlYmWW5JPAGgX dL5DkEBDrje%20u%20GLvdA1EZ4Tg1awCcNt5CUOBRfFkfiRT5 YY%20TASw/%20hRjdz5AVE7pc9LKfyXITohEWOALeJ78FsN69sKYLe5Vn51W 3p3zJEACJCCAACVSALx3hipJZERqAq4tMoPhhL3wfrwf08xHY5 N7FDLij9dNIuXZ8D%209CuMs%20mDAjC246BOHvBJZ%20T8PWS xOfdkLn/73c/QZaIuhdvawsx%20B/t0/xt8//BxGg8Zh8%2004fNy2M1q0aFE2BQUFvbPp3EgCJFA/ArVJZGBiPG4sGwCjCTvh4bkfXw0cgw03Q5ASdwoz6yGRksB9GG tgiA9bOWH345jXzzpKCpGZlIocUYnia79ked7YYtcVepP340Vc XjXZrF//uDcJkAAJ1ESAElkTFVWsU5bI9CKkOs%20HSe8p2LB8BHrabcTd qCwUJ5%20ok0RGXl0HJ7O%20GDJ/N1z8kiquQFY0UpaKh0c2Y/V3S7Fk6VIsLZuWYPqA9vjg074YPfM7HPFKwSftKZGqSCvLIIGa CNQqkUmFSLu%20BFbGk7Fm2Qj0HbUeN4LTUJRyuh4SKUP8yZno 3d0eH9rsgUdkpuJZR7HfEXwzaTZ%20dotGRuX9bZEPtgzvip7T/oBvfD4lsqbEcR0JkIAgApRIQfjeEVxFIkWQplzEHKOeMOjwKSx XuSIyUwxZSl0kUobvhxvhc9MpWHPgIu7c88SDBw/w4MFD%20ISlo0gsRn5GMpIS4hEfXzlFw3X1QLTvOxOHS3%201p kCCjp278ErkO9LFTSQghEDtElkEaeoVLLLsg54dPoXF8usIThV BmlofiSzG/VUD0MlyEfSWeSEo5fWXl8viL2GhZXcYT9oGl8AMFOQn4unxbzC way9M3vcYsbn8wnEh%20WUsCZBAzQQokTVzEb62mkTKpUk493U ffPqxMb67FYFMsbxuEimLgXGX9vjbv9qhm15PGBoaVkx9MGLdL URnVvslnLKW85lI4QlkCSRQdwJ1kUi5LBmXFpij3X%20NsNg5C KnFcsjqI5GyJJz80hBdRm%20F7YEERGWVfxCnrJWSDPidXg5HS yOY9h%20CobYDYNLLCEPn74N7WBaK%20RU/dU8m9yQBEqgzAUpknVHVc0dZFkIfu%20PRqxQUlH3BoxQZwY/gdtcbEdnFkMgBuSgBvvfd8Szq9W9nx73wgIdf/Ovfzpbn4f49N1y/dg3XqkzX4eaX%20Hq/Ks2TITfSG/ceBSKlgL%20dXQUNF0igEQjUKJGybIR738ejgCTkiUotTorM0C dwd/NCeGYhSko/ESNOhL/nPTyLLP1t7fKPyMiL4%20Hn6Qm/2Ne/nV3WZHkR4nw9cP95FHzixYrf1a7sjiQ3Di89nXFs7w5s3fYrDl 9wxdOIDBSVfQCvcikgAJkIDqCFAiVcdSq0vizx5qdXrYOB0nUK NEaqJPshIU5mYhMzMXhSVSPgepiRywThJoRgQokc0k2ZTIZpJo dlMjBLRGIjXSe1ZKAiTQXAlQIptJ5imRzSTR7KZGCFAiNYKdlZ IACWiYACVSwwlQV/WUSHWRZj3NkQAlsjlmnX0mARKgRDaTMUCJbCaJZjc1QoASqRHs rJQESEDDBCiRGk6AuqqnRKqLNOtpjgQokc0x6%20wzCZAAJbKZ jAFKZDNJNLupEQKUSI1gZ6UkQAIaJkCJ1HAC1FU9JVJdpFlPcy RAiWyOWWefSYAEKJECx8Ds2bNhZ2en9dN7773Hnz0UmGuGq4fA ggULtP54qn7Mt2zZUnF89evXT%20faX70/XNbsOT0sLEw9BxtrIQGBBNQikaWiZW9vXzYlJiYKbLJ2hXfu3F nxz6NFixY6MR8UFKRdENkaElAioK%20vrxPHka4c72ynbpyXlf P09OlTpSOCsySgvQTUIpEdO3ZU/FMIDQ3VXhoNaBklsgHQGEIC7yBAidQ96VEWIM4Lzx8l8h0nCG7 SKgKUSIHpUJbIvXv34sqVK1o5tWrVSiHyvBIpMOkMb1QC9%207 d08pj6F3Hdtu2bRXH1y%20//KJz7X9X37it8c/pHTp0UIyf7du3Izs7u1GPMRZOAqoiQIkUSFJZIoODgwWW1njh/GBN47FlySTAD9ZwDAgh0KdPH4VE8iqkEJKMVTcBSqRA4pRIgQA ZTgJNgAAlsgkkUYNdoERqED6rFkSAEikIH0CJFAiQ4STQBAhQI ptAEjXYBUqkBuGzakEEKJGC8FEiBeJjOAk0CQKUyCaRRo11ghK pMfSsWCABSqRAgLwSKRAgw0mgCRCgRDaBJGqwC5RIDcJn1YIIU CIF4eOVSIH4GE4CTYIAJbJJpFFjnaBEagw9KxZIgBIpECCvRAo EyHASaAIEKJFNIIka7AIlUoPwWbUgApRIQfh4JVIgPoaTQJMgQ IlsEmnUWCcokRpDz4oFEqBECgTIK5ECATKcBJoAAUpkE0iiBrt AidQgfFYtiAAlUhA%20XokUiI/hJNAkCFAim0QaNdYJSqTG0LNigQQokQIB8kqkQIAMJ4EmQIAS2 QSSqMEuUCI1CJ9VCyJAiRSEj1ciBeJjuLYSkGQiwusGzvyxBzt 37saBE854EJKKwhJZeYvleYjyccdtl6u4erV8unbtGlxu3oHH0 xAk54mQHekD9z1RpmgAACAASURBVDt38Tw2F8WS6h2VISPkMdz uPEJweiHE8qrbxYkv4RWYgNwqgRLkpyciLiYa0dGVUwzi0/NRIq0oQJKNGL9HcL97D17BycgTS1G1aAly417B654r7rg/QXBSHsSVsVWbUK8lSmS9cHHnagQokdWAcFFnCFAiBaaKVyIFAm S49hEojoDL1jkYPWgAbIbaY9Roe9gOsIDlkMlYe8EfqQUSQBqO k4vs0d/UGOYWlrC0tES/fpawMDOGsVl/2H/9M67c2IcFo20wculp%20CcXQKrUU1nGQ%20yaORwjZh/Ao9gclCiZnrwoHJdWTcDYVZcQmlL4WgIlwTj5/RSMGjwQAwdWToMwbuMtRKUXQ5bzEhc2zoLD0CEYOmwIbAaPxqy t1xCUXlhetywLfmd/xNeOQ2E7fASGDhqAQaO%20xvbrwUgvVG6dUkPrOEuJrCMo7lYj AUpkjVi4UgcIUCIFJokSKRAgw7WMgAzpruth39cMY1cdxMU7D/D48UPcv3kMK0b2hp71d7gQnIaiklfYNaoz2vefjd3HLuC6iwtc XFxw/do5HFg1Bn069MCIFQfx6ywrdOkyEN%20ee4XUwsqrmLl49ts0m HTrh7mHHyMur0QhirLcYFzfNgMW7T5Am3EH4Refr9gmz7yM%20 UYGsJ76PdZv3YmdO0unX3HoZiAy8vMRdHwurE2HYPbWo7h0wwU nN06ERZ8RWH01DEnFchT5H8bXA81gO3crjl6%20idtXDmGFgwl 6D1uByyFpKFIS2fomhRJZX2LcX5kAJVKZBud1iQAlUmC2KJECA TJcywiU4MX24ejSewoOPI1DXuUFOlkR4i6vwCib6dj5IBbZxQF lEtll7G74xucqRA%20QojDJDWsGf462dltx1/UgFlh1Qvehq3EtNAPFMjkKAo5htmUPWMw6gAcxuYqrkOLIW9i1 yBGDrIfCrMOHaD%20xqkSWvNiGET2G4HtnP0Rl5CI3t3zKLyqB TJoC140TMWbR73gUlY0SmRyipLOY07czhv94Hz4ZxQg4OBG9jC djt0cEckpvy0sLEXdpESy62GDFjTCkVb%20nXo/MUCLrAYu7vkGAEvkGEq7QEQKUSIGJokQKBMhwLSMgRcShSdDvb IqpW8/hSUwORBXPDMqyo%20Dr/QLhaYUQl7xNIgF5rifWDPocbe13wCc6Fv7Hv4ZZJ304bnVHdEo gzi22hoHZDOy9H4kcccXVSQD5jw5gxcqfcPDKZWwY1Rl6U5UlU obUc7PR13gGdl69gTt3buL2fV/EZBVDUnoFUV6ElNAX8AtPRUFZmVJkvdgFp%207dMHaXNwJzSpA R%20gi33X2RmFtccWtdjrw738Oy4wAscwlBqrjhqaBENpwdIwF KJEeBrhKgRArMHCVSIECGaxkBOYqjb2LzRHPo9egFM5tRmDznO 2zcfQI3fKKRLZKUX3WUVtzO7jcT2/Yfx7nz53H%20/FmcPn4APy2yg0E7fYzb5YnYnBJIMp5h/7Q%206GzyJX7a/BX69zTD1F/dEJ4txmuFBErSoxAanYrcolgcnaaPntOUJbIETzfbolP7rjCxH g4HB3sMHjAQI2ZsxOWXaSh9TLPyTxxyA3s3LMR46z4wHrUSZ1% 20kIK9iu1ymdM%206KAznFlqhq8kc/OmXhALlxlQWVsdXSmQdQXG3GglQImvEwpU6QIASKTBJlEiBABm ufQRkBUgMuI8L%209ZhwWR7WJsaoluXbjA0H4YZm53xKr0QEkm 5RH7yaSf0MbGAlaUp%20hj0QLfufdF/xEQs2nYOXjG5EJXeDpeLkfLoZ4zr1RVd232CHuN34E5oFkRvkz ZZAo5Vl0h5Dtw3j4PN8C%20w7sB53HB1xbWjqzHGpCcGLjwB3% 20R8xdXF3MeHsHL%20eAzo0Rqf9nTExushiC%20UVRFWiBLgsX c2%20vc0x/SddxGeJaq6vZ5ZoUTWExh3r0KAElkFBxd0iAAlUmCyKJECATJc SwnIIM5NRWyoP5563sXVk7/ih3Em6Ny1P5acDUJq3suyZyI/7z8He45fxI0bV3F653wM6twaXW2X4/zLFBQqfXWOXBSPS4vM0aaVBZZcfonU4sqHLWvofo0SKUZa2HN4 Pw9DSr4YpUXLihJxZ6UNOht8gUP%20icgvu8gohzgzFqGBfvC% 20ewSLBhugz/ifsetZJrJLyuuSF0bBdddc2BqZY%20yqP/EkJg9Kd9VraFDtqyiRtTPiHm8nQIl8Oxtu0W4ClEiB%20aFECg TIcO0iIAnGpc3fYdMpPyTnvr5HLBPnIsn/EGb0ao9%20y64jIvl5tQ/WyFGSE437v0yEUXcjjN1yB5FZIqUP3JTAd/twdO4yDntexCFX6a7yGwBqkkgAMkkRiktkeH1HWobkP7%20Afv sR2PQkHAnpyUjLFUNSeYVTlosnG4ehU4%20pGH80Ggn5cshzA3 Fp03RYGw/AlPUn8TAyW/HM5xvtqMcKSmQ9YHHXNwhQIt9AwhU6QoASKTBRlEiBABmuXQQk ofh9kiH0hq6BS0hGlVvOstRLmGfUAQN%20uI3IlBfVJLK0G3KI kx9gu5M%202hs4Ycf9GGQrPvFcAv%20f7dC523js9Y1HXn0lss Qffy6fhW/3P0JcVuUnYER4uXMUuvaYhP3eLtizZBoW7PZArNJ2n5%20GorP BNEw8EY2EzGjc2jINA01sMGvbRTyNzVXJF42X9pwSqV3DWNdaQ 4nUtYyxvZUEKJGVJBr4SolsIDiGaScBeRFCzy7CAD0DDJy4DD8 fu4I79%207D1fk4ts0fAr3uw7D2eigyCspvZ7/xFT/yYiTcWYvhXdqj9/QD8ErIQ/n1TIESKY3Gqa%20M0dXsC%20y6E4LMwnwk%20pzA4kHd0HvKfj yJfoXTc83QzXQafrldvj3p2Uksse4Kw0n7cPBlJoKursFIg04w Hr8cey%204wuPhYzx%20/BiPnzxHeOmv5lRewWxAZiiRDYDGEAUBSqQCBWd0jAAlUmDCKJE CATJc6whIskLh%20vtyTLUbCAtTE5iYmMLMoh8GDJ2IZb/dQVB6keKDNW9IZOn1yIIIXFo6AB06WGDBST%20kFJQ%20/yhQIlGCFK8/sMjODCaWg2E/eiSGWPaB0dB52OsejmyRCGnPjmPZKAuY9BtStt3Wsi%20Mbedg 990wxBdE4/RsE7Ru%20R7%20r4MeDPsaw9i4YjIdhXU3IpBe/K7Lo%209OEyXy3Xy49d0EKJHv5sOt2kuAEikwN5RIgQAZroUE5 BDnxCPomSfuuDjj8qVLuHztJty9AhCXXVz%20zKE8F%20GPb%2 0O2VwSyiyo%20saLoiQw5EU9w%205oLHoSmo7DsNw1lyAl7hFu 3vRGRXVRxdVIRUHVGXoQYH1fc9YlCTtHr5zLl4kxE%20NzBmQM/Y/OPG7H9t1NweRyG9NIvGy%20V15JsRD%20/i3PVtqcVlkAmz0XEk9u4dukCzpd9HVHpVxJVTBdu4GlMDpSqqt qeOixRIusAibu8lQAl8q1ouEHLCVAiBSaIEikQIMNJoF4EZBAX ZCMjPQPZBWJI37gFXdv2elVW550pkXVGxR1rIECJrAEKV%20kE AUqkwDRRIgUCZDgJNAEClMgmkEQNdoESqUH4rFoQAUqkIHwAJV IgQIaTQBMgQIlsAknUYBcokRqEz6oFEaBECsJHiRSIj%20EaJL BkyRKMGTOmbIqJidFgS3S/akqk7udQkz2gRGqSPusWQoASKYQeKJEC8TFcgwT09PTQokWLsm nQoEEKoawUS02/6pLYUiI1OJCbQNWUyCaQxGbaBUqkwMTzdrZAgAzXGAFliayUSW 169fPz0xib%20lZMiawvMe6vTIASqUyD87pEgBIpMFuUSIEAGa 4xApRI1aGnRKqOZXMsiRLZHLPeNPqsFom8ceMGzp49Wzbl5eU1 DXIVvdAVibx586YiB7m5uU0qB%20xMwwgoS%20S2bdsU46PyWN XEa5s2bRS32HXpSuTt27cV/LKzsxuWEEY1WwKUyGabep3vuFokUucpvaMDuiKR7%20gCNzVTA soS6e/vrxUU9PX1dVIitQIeG6GzBCiROpu6Zt9wSqTAIUCJFAiQ4RojQ InUGHpWTAJVCFAiq%20Dggg4RoEQKTBYlUiBAhmuMACVSY%20h ZMQlUIUCJrIKDCzpEgBIpMFmUSIEAGa4xApRIjaFnxSRQhQAls goOLugQAUqkwGRRIgUCZLjGCFAiNYaeFZNAFQKUyCo4uKBDBCi RApNFiRQIkOEaI0CJ1Bh6VkwCVQhQIqvg4IIOEaBECkwWJVIgQ IZrjAAlUmPoWTEJVCFAiayCgws6RIASKTBZlEiBABmuMQKUSI2 hZ8UkUIUAJbIKDi7oEAFKpMBkUSIFAmS4xghQIjWGnhWTQBUCl MgqOLigQwQokQKTRYkUCJDhGiNAidQYelZMAlUIUCKr4OCCDhG gRApMFiVSIECGa4wAJVJj6FkxCVQhQImsgoMLOkSAEikwWTopk dJo3Dt1Hc%20S8iCSCQTAcJ0loFGJlMbA46wLfBJyUKQ0BnXjZ w%20liPE8CxefeOQoN15nR0ITbbgsG5E%20Hrh76w6eRuagsKR 6P6VIC36Ce66l27PLtkty4hDg5QEP17vweBqC5DwxpPLqcQBES Xj12BvBSXkolr7eXhl/z8MbIaXn1xqDX%209fOUeJrCTBV10jQIkUmDHdkkgZMmPCkZju hg1jvsFx3wD4hidBJJYIpMBwXSSgGYmUISs2Aolpbtg0YQmO%2 0fjhRXgSikXl/%20G1XSJlWbGISEyD%206YJWHr0KXxfRCCpQISSmkRDFwdFU2q z5BWOzB%20NgUZ9MXLDTYSlFaNKmiThOP3tGAwyMcfsI/4IfHIZ2xdMgP1wO9jajcSwocMxdt4OXA9MQ4GSKAIiRDmvw5Th E7HxZhjSiktLlSM30Bk7FpbH2w0biuFj52LHtUCkFdR%20fqVE NqWB17z6QokUmG%20dkkh5Dp4c/A5zZo2GcXtD2DiOwthvjyAhNU8gBYbrIgGNSKQ8F16HVmD%20L AeYdOgFm9Ej4bT0EGKTcsoQardEypHrdQgr5n8NB5MO6GUzGvZ OS3HIKwE5b1zl0sUR0cTaLH6KzUO7ovU//xf/NPkeV4NTIVKySEnEMcwwa48P/toSg388ho3Th8Bi8JfYsP80zl1zweWj6zDB0hj2q50RklqkEFB x9DWsse%20B//t7V8w85Y%20EQjkgDsXpxcPK4tfvP43Ll49i3cR%20MLZfjSvB qShSqrcmypTImqhwnS4QoEQKzJJuSaQISS/dcOgbG%20h/9ik6D12MPc7PkVsoFkiB4bpIQDMSKUJywD0cWWoLw3at0WnIIu y69BTZBaIyhNoukaLkANw7uhRDDdujdachWLjrEp7G50NU5UqV Lo6GJtjmMonsBkOTXvis9WCsdQlBmsIipYg8MRMDh5ii0z8/xojlm/CVnSPm77uPsEwxStMpFyXi3DwTdBuxHnfD0lH2PkEcg%20trx2 LEECO0%20dAQsyskUpbmhp%20mOGH%203nsIzRRDJhch8dx8mH YbgXWuoUiv5U0GJbIJjr9m0iVKpMBE65REApBlemL7ZCfMXzMP 9raz8NujeOTyXpzAUaCb4RqRyNIxmPUQv0wfj/mr5mLksFnY6xGNbHH5pRrtlsiyxuPhL9Mxfv4qzB05DLP2eCA6 S6y4SqWbI6GJtrpMIrvDfOoCOPbUw8gfbyE0vSJX0micnGWNMY u/hFWbDhi14TKu33mK4OTXbwik2f7YO7EneozZgYdR2ZBCjNgb6z BuxDRs3PY1rDpbYN7p8iuR8qIkBPs8e/2MpDQb/nsnoWePMdj%20IBJZtbzJoEQ20THYDLpFiRSYZF2TSHlRJO5ev AH/6CDcPX8F3rHZVR4MF4iD4TpEQFMSKS%20Kgvvlm/CLCoTbRWd4R2eiqOKfrNZLpLwIUe6XcdMvEoFuF%20HsFY3Mys brUO6bRVMrJNJizn7smmGJvo6b4RqWUXZFURpzGrMHOWHdsbUY 1aMrHLY8RmRW6Se8xAi78zucty3HsmlDYWJij%209OeCMxrwTi uFv4cdwwTNnkjGduWzBKv59CIl/zFCPM9Q9sWzYNw0xMYL/sBLwT82p9ZpYS%20Zog53SLACVSYL50TSJLHwAXiUSQyWUQF4s gldfysI5APgzXXgKakkjFGJTJIBaJIJHJFFfytF4iy25ziiCSy SATiyCSyCDjIaSdg7xSIueexv2jizDIeCy2uYcjs0SC2LNzMWj Mely9/yum9VKSSHkunhxZjV2zJ2J8/x5o07oXnDZeQ3ByGG5uHI9hkzbgkm8Kcvx%20haNBDRJZ%20sz v0dVYML4/erRpDcMxG3EtKL3KNxDUBIsSWRMVrtMFApRIgVnSPYkU2GGGNx kCmpPItyPUBYl8e%20u5RasIKCTyDPz8L2GZtQkm/HwfkRlROD/fBo7rriEg4Ci%206q0skWJkRAchzO85nj%208hd8XDIah0QSs2 fg1hg8ej7UXniO5QIKSgLdJZHn8y%20cPcev3BRhiaIQJO%204 hKuvdz51TIrVq5LAx9SBAiawHrJp2pUTWRIXrdIEAJVIXssQ2N piAkkS%20jI/FtW8HwnTyLng8OIS5Ng5Ye/UVkmJPY1apRG5yw7PgVOSKJGUfqimvU4acx5swomsPWBj8Gx%2 016gLz4Y4YP3kKJtn1RZsPPkZnCztM334bkckZyEpJR66oRBEv y3mCzXbdYDBlP57F5iquttfUH0pkTVS4ThcIUCIFZokSKRAgwz VGgBKpMfSsWB0ElCUysQApVxejv9k0rP9hNExGroHzq2QUppwp k8iR877BhPGLsed%20NDIUn%20AGRM%203w76bPmwcJuDLOXMw d%207csmnORCt0%20FcrGAyZUPaJ7nCPw1g5awn23I96HS96ju 0je6DnlAN4FptHiVRHzlmH2glQIgUip0QKBMhwjRGgRGoMPStW B4EqElkEadIlLLQyQd8ubWC%207DICkosgTS2XyFFLv8Uw/R4wn/4LbgVnIr1EioJkX5z7YSh6GI7DVudHCIiIQlRU%20RR2ex2Gdj XGtF9v4mlMDooiz2F%20P32YT/sZN4MyUFiQDN9zP2CoXi%20M3%20mByOx3f8cPr0SqY0CwjsYg QIkUSJUSKRAgwzVGgBKpMfSsWB0EqkmkXJqA8/Mt0P6/vTD//EskF8khq5BIh03OOLtzCUb3M8fA4Y4YNXESnOytYWoyBF/tuIHA9CLFberSpr/xTKQkFT7HvlXEj3Oyh7WpCQbP3AGXwHTFtw%208rduUyLeR4Xp tJ0CJFJghSqRAgAzXGAFKpMbQs2J1EJBlIPDeddx5GoPssq9hk iL1pRuuXnFDQEpe2a/XyItj4H3zGjwD05CVEoGnt05i75b12LBqJdZu2oUjl%208jMDk fYqXfdy9tuiw7BJ4urvCJya4QRDlKsiLx9Napsvg1azdh15FLu B%20YjPzqwTX0nRJZAxSu0gkClEiBaaJECgTIcI0RoERqDD0r1 lYCMjHys9KRkZKCtKzSLx5//fVTdWpyRXxaWhbyRdI6f/0TJbJOdLmTFhKgRApMCiVSIECGa4wAJVJj6FkxCVQhQImsgoML OkSAEikwWZRIgQAZrjEClEiNoWfFJFCFACWyCg4u6BABSqTAZF EiBQJkuMYIUCI1hr7RK165ciUmTZrESUcYfPjhh2jRokXZZGtr i8jIyEYfI6yABFRBgBIpkCIlUiBAhmuMACVSY%20gbvWJDQ0OF lFTKCV/LJU0XODx9%20rTRxwgrIAFVEFCLRC5dulTxjjg5OVkV7daaMnR FIpctW6bIQWJiotbwY0M0R4ASqTr2y5cvVxxfMTExqiu4gSVRI nVHGGuSWkpkAwc%20w9ROQC0S2bFjR8W74tDQULV3sjEr1BWJ7 NKliyIHQUFBjYmEZesIAUqk6hJlYGCgOL58fX1VV3ADS1KWyA0 bNuD48eOctJhBu3btFONn3bp1yMjIaGDmGUYC6iVAiRTImxIpE CDDNUaAEqk69Noskc%20fP1ddR1lSoxDgB2saBSsLVQMBSqRAy JRIgQAZrjEClEjVoadEqo5lcyyJEtkcs940%20kyJFJhHSqRAg AzXGAFKpOrQUyJVx7I5lkSJbI5Zbxp9pkQKzCMlUiBAhmuMACV Sdegpkapj2RxLokQ2x6w3jT5TIgXmkRIpECDDNUaAEqk69JRI1 bFsjiVRIptj1ptGnymRAvNIiRQIkOEaI0CJVB16SqTqWDbHkii RzTHrTaPPlEiBeaRECgTIcI0RoESqDj0lUnUsm2NJlMjmmPWm0 WdKpMA8UiIFAmS4xghQIlWHnhKpOpbNsSRKZHPMetPoMyVSYB4 pkQIBMlxjBCiRqkNPiVQdy%20ZYEiWyOWa9afSZEikwj5RIgQA ZrjEClEjVoadEqo5lcyyJEtkcs940%20kyJFJhHSqRAgAzXGAF KpOrQUyJVx7I5lkSJbI5Zbxp9pkQKzCMlUiBAhmuMACVSdegpk apj2RxLokQ2x6w3jT5TIgXmkRIpEGBzC5dlI9LHE2537uJZTB6 KJdUBSJEW/AQed6tvFyM58BlCkvIhkirHSJCXEIinDz3x6EUk0gtLIFPeDEC Wn4TgZw9x//5jvIzNhkgiL9uDElkNlIDF2iRSlhOFZw/ccefuM0TnFuHNtKcjxMsDbnefIS%20vSKklYqQEPUdIUtWxIst PRkhFTv1js1AsqZp1Q0NDtGjRomzib2cr4dTSWUqkliaGzaqVA CWyVkTv3oES%20W4%203FqNQEkADs0dBWtTUzhtcUdMlhjlSle xnyQcp5Y6wsbcCgtOhiAlv3SrHEVR17Bh%20mRsuBaOtKKKCHk eQlx2YcnkkRhuNxIj7R0wbdle3AnNQlGFaBZF38W%2076bDwX4 kRtoNw/AxX2PzJX%20kFkjQQ09PIRr%20/v7VGqqZRX19fUWb/Pz8NNOIBtRam0RKXh3BAsdBMDUdg82ukcgQVck6JBFnsGzsEJh bzUdoeFJFC0rzfh0bZ0zFeudQpBRWxhTh4NpFcFTK6aYLvkjJL 1GMJUpkA5KowRBKpAbhs2pBBCiRgvABlEiBAJtbuNgLGwZ%20j k9a/i/eN1%20N25GZECsxkEQcwTSjz/D%20X1vCdsdzxOZIkRd2G7/OGYgOH32G8b%20/REKZWAJFgX9ikW1fmDosxvbDp3Hm0EbMGNIPI384j4DUQkhlqX D90QEmZg74dscRnDn7B9ZPsEAvm6U4HZCC9t0okUroBc3WJpFi 700Y0ulTtPzf92G2wgVh6SKl%20iSIPDYDpu0%20wF9bDoGvf3 Tp9WPkhd/BnnmD0Olfn2Hc/heIyyuXSFmaG4Y5zsGS7Ydx%20uwhbJjYD31sluCkfxIKKt48U CKV8OrALCVSB5LEJtZIgBJZI5a6r6RE1p0V9wRQJpEdoG/SC20%20tcVGtyhklVSSkSLy%20HT0szZBx3/8G/Y7nsDz0m/4YdIw2AwxRvv322Hi7/4VEinByz2O0O85GhuvByCtWAq5OAN%20v01Bn75f4MCzBOQVe2 GjTSeYzjyGZ/EFkMrFSLn5Paw6WWLJ5WB83LGH4qofr0RW5qBhr3WSyC4GMDZs g09tN%20B2eMbrNw/SKPz55QDYmHREy4/t4Osfihj3g1gxZXh53j9ohwlKElnivRlO653hHZtfntNby2Hdx RKLLwYipbhcNCmRDcujpqIokZoiz3qFEqBECiRIiRQIsLmFl0l kR5hO/waOPbph1JZ7iK60SGk0/pxhhdFLZqJfq3Zw2OGB01uWYdnaXTh9djVGdOiBqQqJLMC1RX3 w%20ZDVuB%20ZqXjGTuzzE2w7m2Le%20SCk5Plih10X9J70G57 E5kEiFyPx8kKYdRyA711C8Z9OlEhVDb86SWRXM0xd4AD9HqOwy TUcmRWXoKXRJ/HVAAcs/rIfWrcfDT//ADw%20uBzfrd2Jk2fWwL6zHqYeeH0lUuK3E3Y/nMXD6NzynF5ZDMvOA/Dd1WCkVtwmp0SqKrPqKYcSqR7OrEX1BCiRAplSIgUCbG7hFRJp Nv8Qdk8zhuGYHfCMyUbpxUhpzCnM7D8a6/9cB/vOHeGw4wmePvVDWGI2CmOOYIpeT0z7o/JKZBFuLTXG59bL4RqRURZfirLowVoMaP85HPf4IT43BwFnVmDc YFuMn/MdVq9ejGlDrDDkq1/hFpmFTt15O1tVw69uEmmBeQd3YrpZH4zZ6o7IsjcPUsSe%20Rr WjutwfO1IdOvsAD//MKSEBiAsMQsFMUcxvachpilJpDzvFb4cPxnjZi/D6tVLMG2oFWxn7oRrRCaKKz5fQ4lUVWbVUw4lUj2cWYvqCVAiB TKlRAoE2NzCKyVywUU8PDoXlr3HY%20ejWORISmViFvqP3oAbD 3dhYo9OcCh7JrLcCmQJRzG1ikRKEXXyS/TtMQBz999DZI4I4sxAXPzOBu0//BeG7XiOuOwChF1cjuF6n6O7xTCMHtkfPVq3hcmM3/AoLhddelAiVTX86iyRZz1wZH5/GI3/GR5RWZBI43BujjUc1l2D564pMOhSKpGlz0SW/8kSjuOL6hJZGIaxVmbobj4Uo0cOgF6bdjD5Yi8exORAXPHZG0p kJUHdeKVE6kae2Mo3CVAi32RSrzWUyHrh4s4KibyE4IDzWGjRB 5P2eCEuOxrn5vTHqHU3ERx4GNP1apNIoCTJE79%20NQhGpoMwe tIXmD5xHMZ/MQKG//4MTrt9ERt0DatHmWPg1A047OyOhw/d4bx3Loaa2mDB0ef4v7Zd%20UykikZknSXyXAD8LyxGf%20OJ2 PUwGpnRFzDPejTWXn%20FgCNfometEilDwo21mLh0B/647IaHD%20/h6r75GG4%20GPMP%20yAxr/zLgyiRKkqsmoqhRKoJNKtROQFKpECklEiBAJtbuJJEhiTH4PIC c/Sduh9PvI5g9oCRWOsSitTYP/FFHSQSchFSX7nj7L5NWPn9cqzbcRiXLqzFiE7GmHc6COHOy2De sT8WXwlAasV9TlmOD7bYdUWvmUfx/z5qT4lU0firu0QGIiHGGd9YmWDK%20iqykQAAIABJREFU3od4f GQuBo1ag2tByYg9NbMOEpmPu8v7YYebN5Irc5r7DNtGdUfvLw/DPyG/7Gt%20KJEqSqyaiqFEqgk0q1E5AUqkQKSUSIEAm1u4skSmFiLx 4lyYGn%20Bn9Y4wGjEGlwPSUNRysk6SKQcOa9u4cQpV/jHxiEhKRnpecVIvLII5j2d8MvjWCRcWYg%20n9tgpXskMio/AS6NwP6x3dBj0n785YO2lEgVjb/6SGRSQRIuL7CE2fSNWOVgArvVVxGYUoiU03WTSJfFxvjNyxfpS jk9OFEP%20hP34nlsLiVSRTlVZzGUSHXSZl2qJECJFEiTEikQY HMLryKRxZAmnMUsk74w6v4ZzL67huC0YkhT6yaRuZ6b4TjAET% 20cfY7EQhFyI93wy0Rj9J24Gw9ic1AUdhTT%20ujBetEf8IjKh qg4C2GuWzG2Z1fYbbqLlp92pkSqaPzVSyKLpEg8PxcWJsbo/pkZll0JREqRFKl1kkgJwo/PwLSNx3AvIgvFxVkIv7sd43t1x4iNdxCRWf7l9bwSqaLEqqkYS qSaQLMalROgRApESokUCLC5hVeTSLk0Dqdm9kWbj3thweVgpBX LIauTRALS1IfYPXMwzAfaYdzUaZg4chCsbL/E9pvByCwq/d7IBHjumwe7flawdZiEadPGYbiVMfqNW42zL1LQvgu/4kdVw69%20EimHNP4MZpu2xX8M5%20H8qxQUyWV1lEg5xIkPMH m0A4Y4TCzL6Yj%20xrAauxJnnichv4TfE6mqnKqzHEqkOmmzLl USoEQKpEmJFAiwuYXL0uB78wKue8Ugp7j050WkSH7ugvNnb8M/Nb/s07Xyokg8uHwBbgEZKKj4uK28MByel6/AMzQLhZW3MeXFSAlwx7nffsKalauwfvsBnL37EkkF4orfz5ZDn B6CR1ePYufG1Vi%20fBU27TkBl2exyBFJ%20bOHKhx7tUmkLM0 fty%2064El0dvlPUkqT8eLmBZy95YeUPBHkkKM48iGuXHRDZma %20omWleX9wxRmeIRkoqBBEyMV4cusMdlXmdPdxuPjEILtYwp8 9VJDTrRlKpG7li619TYAS%20ZpFg%20YokQ3CxiCVEZBDUpiN9 NQ0ZOaLIJFVfMeLcvlyMQqy0pCSko6cIgkqd9Hjb2crUxI0X5t ECiq8puAqOS1R5LRyV97OriShG6%20USN3IE1v5JgFK5JtM6rW GElkvXNxZiwhQIlWXDLVLZC1Np0TWAkjLNlMitSwhbE6dCVAi6 4yq5h0pkTVz4VrtJ0CJVF2OKJGqY9kcS6JENsesN40%20UyIF5 pESKRBgLeGrVq3CjBkzODUCgw8ICfzq5l/NV1MyWyrqQaZ7/169fr9Dnio48%20UhyLdnZ2OtGXyMjIxkkmS9UpApRIgemiRAo EWEt4t27dFCfXFi1acL6RGPj7%209eSCfVs1tfXV%20TYz89PP ZWqoBZKpAogCiiid%20/einHD84R6zpNeXl4CMsbQpkKAEikwk5RIgQBrCadEqucfAiWyl oFYy2ZKZC2AGnkzJVI95wllQadENvKg1pHiKZECE0WJFAiwlnB liVy3bh1%20//13nZgeQTxZURbW13q1atFG2kRNYyEGvZrG0SefnyZcVxkpGRUU vrdX%20zskSuXLlS0XddOV/oSjvbtn39K1eUSN0/blTRA7VI5Llz5xQHdU5OjirarTVlUCIbNxXKEvnq1avGrUyFpX fv3l0haAEBASosWXVF8YM1qmOpbRKpup7pRknKEunj46MbjdbB VhoZGSnOa5RIHUxgIzRZLRLZCO3WmiIpkY2bCkpk4/GlRKqOLSVSdSwbUhIlsiHU6h9Diaw/s6YeQYkUmGFKpECAtYRTImsBJGAzJVIAvGqhlMhqQNS8SIlUD3 BKpHo461ItlEiB2aJECgRYSzglshZAAjZTIgXAqxZKiawGRM2L lEj1AKdEqoezLtVCiRSYLUqkQIC1hFMiawEkYDMlUgC8aqGUyG pA1LxIiVQPcEqkejjrUi2USIHZokQKBFhLOCWyFkACNlMiBcCr FkqJrAZEzYuUSPUAp0Sqh7Mu1UKJFJgtSqRAgLWEUyJrASRgMy VSALxqoZTIakDUvEiJVA9wSqR6OOtSLZRIgdmiRAoEWEs4JbIW QAI2UyIFwKsWSomsBkTNi5RI9QCnRKqHsy7VQokUmC1KpECAtY RTImsBJGAzJVIAvGqhlMhqQNS8SIlUD3BKpHo461ItlEiB2aJE CgRYSzglshZAAjZTIgXAqxZKiawGRM2LlEj1AKdEqoezLtVCiR SYLUqkQIC1hFMiawEkYDMlUgC8aqGUyGpA1LxIiVQPcEqkejjr Ui2USIHZokQKBFhLOCWyFkACNlMiBcCrFkqJrAZEzYuUSPUAp0 Sqh7Mu1UKJFJitJieRshxEPX%20I%202734BuXD5GkOiAp0kO8 8eDem9tFyYHwehaOtEIxZIowCXLiA%20Hz6AEev4hAWkEJZHLF xqozomQEej1DWFohxBUF1Fkihbb7eViVdksLMpGcmID4%20PjX U1ImCiVSVDZfVpCM0BeP4fnAC6/isyGSVG4B%20NvZVVNb1yV9fX3Fb/P6%20fnVNUzj%201EilVMgR26MLx57uOHeixjkFr1xEgGkGQjz eYh7rg8QER75%20hhTOt4S0vIglpSfCCS5CQh%209hgPH79AeG o%20xNLXx1ppzboqkdJ4Lzw5fx2%20Cdkoen3SVIapVfO1S2Rp 7v3wpDT3z2OQU1jyZvulGQh/9gj3771Abm4hIM1HflIwfJ88gOfj5whPyXsjv9L8ZIT5eeHhw6 cISshBsdK5FpAiPykUL7wewcsvEmkFYkjfrJVrGokAJVIg2CYn kSUBODzPATYWlpiwwxNx2WKFNJWhkkTgzLdOsO1njcVnwpFWUH EyF0fj2oZpsJ/%20MzzisiEuXS3PQ/D1XVg63QkOY8Zg9GgnzPj%20ANwjs1H8xlEuRvS1DZhmPx077s chq6wAoM4SKXmFI/MdMbi03ds9EFu93dIInFk2FrZWpe0OQ6pSu69vmI6R03fgflxW ebshRfjFDZg7bRwcHR0Vk9OsXbgfnwWRHCiOuYeDK2dinIMjHE bZYdSEBdh%20NQBphZIyXpTIhh1YlMiGcdOuKAkCjy/GOFtLWI7bgrsR6WXHjHIbpZHnsWLScFhZDsfYkQ5wUjrOyo%20 5MZi0wblMGHNDbmLv9zMwztERY0aPhtMXy7DvTiiepEpQWHEe0 TmJlOcgISYF6fe3YfuY2Tj2xBd%200SkoFtUgXcrgNDxfu0RKE PTnt5gwrB8sx/2EO2FpKK7i%201JIoy5g1ZQR6G%209AAHerrixdzm%20mewIJy cnOIy0x5jppfkNQXpZcuXIC7uDA6tmYdJYJzjY22H0lKXYe7t8 uzw/AuG39mDVV2MxarQDHBzGYeYP%203ArOB0FNbx30TC%20Jlk9JV JgWpucRIqfYF3/dvjPP/4XH1iuw93oLIiVGEkij2Jqnzb4519aYujPvojPLX37LEaMyxqM 6PoR3us%20B5crThzisDNYbGsK62mr8OuRkzix%201uMNDbGmJ 9cEZMtqiKn4hgXrBnRFR%2091x2zL4UiteLMU2eJFD/B%20oHt8d9//A0fWK6Fa1TVdksjj2Ja3/J221Zrt123j/D37rNxKTS1/IQnz4LzAiP0sByDuUuWY/WaNVizZg3W/XwRfmn5KJGlwW3zGJiajcI3Ww7i%20Il9WOVkht623%20FcYCo KZbwSqTRk6jVLiawXLi3dWQzvzbbo8mlL/O19c6x0CUWaSLmpUkT/%20RXM23%20Av7xngHmzv8HaimNszZrVWOzUF60/ag3LHy4jNCEA57%20zh6X1FCz/%20Q/8eXwPvnM0h6njjxj1sw/C0ovLziO6JpHyvGf488fvsXiiFfp37InhE8ZhyoqjiErIVgald fO1S6QYT7eMQPc2pbk3w/KrQUgtfddd%20SeNRvTJ6ejX4UP89R8DcXyZA%20ytbGA5ZQ1% 20PnQSpw/vwEI7U5iOXosrQSkozA/Eme8dYD1sOlb88gdOHP0ZC4Ybw3TsZtwIjYf/%20eVYbKMPM/s5WL/3CI7tX48ZwwbC4YfTeJGYzyuSldwb8ZUSKRBu05TI9tAzMkTrT 4fip/sxyFa8OZYi6vh0WAwwRoe//x/sfymXSHHsTaxzGgLr3q3wz57zKyRShrQ76zFmxNfY6xmJbLEM8 qIYHP/CAB3tt%20BxbA4UbxTFsbi5zglDrHuj1T97Yn6DJbKDot2b70U jS7ndJ76A5cCKdldIZEnsTax3soV170/L2q2QyBI/bB/RHYOWXcaLiFRkZmUhq3TKKYBYJoO8xAubbDrB5Muj8IkvgFQuQ tL1b9GvoyW%20dS79hynn7ewGHleUyAaC06qwconsatAXBq1bY %20iGWwhLV3orKo3BqVkDYWPcAf/491Dc9/QtP76yspAR5YZfppij7/BlOPEkHrlJd7F54ih8vesuQjJEkMmLEXtqNoy62uF9611wC88o O4/onEQWJ%20DFzf1YZGuILv/9LzoO/AobT3giPbdIqzJZvTF1lcgehqW5bwPbdS4ITnt9wUAacwanZxh hsHEHtPzYCvMMW8F47E/Y/iAB6SJZ2a3tyHML0a/HECx39kaEx1aMtRyKefvdEZ4thkyWj0jnzZj99ab/z957RkWVrY26%209zz49wzznfP3l/cX%20/QZgwgRlQUcxZMoIi2CXMGs7Y5tlkx59Bm0Ta1sbvNZEmCIgYyk iXnop47KlAEqS4q0QVOxiiFtdac653Pu9aqp94VimtBv7J7XEe aNu7Hyst%20xOcWU1KYStCRydh0mcT%20FxGkf3HGq/KIxN/6EhASqSfBuimRjbF2dsXBvAX2O54RlaG0MUkk5yZ3Y9iCqXT/W30cZBKZGsX99Y4MGruRbdOsqd/ZVSmRUnKiA3jy/BXx2QXyT4SSjFfsH2VO85Fu%20MVmKj8lFhJzfz2Og8aycds0r Ot3xlUPiew80QV7C3Mctj8lqtR%20JVGcm9JdGXcDRdwpUdzfM EoZd2cadHZVVSKlKVeZaWWFs9tdfnvyjCdPvXkdl1F2nU5xADv smtN%203BG8Y7Iplhbx6YYrXcx6suzue1KEROq8VwmJ1BmdCTV USKS5zXhmD7fE0uEHfnmXqjqjIYm%20xMw%20DrhO6s63je0JC IxQxC7N4%200lV/p2GMDCsz7EZRdTkhND0LMXBMdmKi6BkWQSengcbSxG8J%20Dj/P842f5caS2SSRIyfA9zKyxs5iwaDZDhszh0JMI1WU8JpTMCqFU VyItu45l5rBWtHbYxP23KarLhKKvzGFqp964OHenfhNbjm/exo3nH4jMLlYWFaRkP1pNP4tezL98kYc7BtNp0BKu%20rzidZA XT5968SokGH//MGLir7OwWwv%2023opd18nUlozKPTfhX3rrsw8G0Bs6WVLFUYh/jAkASGRetKsqxLZZd5J9o7vQBvH3XjEKKqGkugLTO0%20jHXn1 zG4SRMcdvvifXUDowaMYdPNQB5tHEBTm1KJLAe26AO/nXZjzSx7bDrZseisH4nKC1aKYh%20yadQAxmy6SeCjjQxoaqOX RHaZdwK3CR1p67ibF8pqpyT6ItN6DGfduXUMMVPE7XV1I04Dxr DxZgC/bRxIs65lEln0cgsDzZrQtu9wRo0by6hhgxk%20biH7H4STlicB aSbB55Yysr8t41xWsXHjMqba9aT/5N388vEzsg/U4prIcvnX4lchkVrAMtlFlRLZdTaHdk3EpsMotj36QKr8XV5Cz JXZ9HNYw6k1w7Bo7qCSyJLE39gwzIquzgd4EpGhFI/SQRbx8clZ9q%20bzYhunbGbf5IlP70nNlNxzXZtlMjc9/e5dMMHj/dh3L1whafhSWRXuGGkdOym83%201JbLbTA7smEi3TqPY8jBckX tJLFfnDcC6zxJOrB6Opbk9vi/fyW%200VJ3wzo/izgpbWneazOGHh7jk0gqroVNZPGc6UyeOYeTQwQwfv0h%20TWx K6n1W9DLnmw4LuR2aoPqQku/1A3bmzbDf6cmHz7XgbiXTSa9OkQiJ1AlbWaM6K5Eu1/E4OYMu7cawzzuWzGIJMZem033Yeu55uDG6RRPsV%201itl0/nNZe51VyJgE7bKuUSGmmB0eXTMPBphn/qNeJCXt%20IyKjgJLiOH7d7ER/p7Vcf5VMZsAObPWVSJdrvDg5E5v2Y9jnFaOI%20/IMegxbz10PN8aYmynj7l8W9067chIpJfO3jdj37IvTom0cu3CF K2d24WJrRXu75Vx9nUyuJJf311cwxLIx5jaDGD60BxbfNqDLtK N4xWVRJBUSWbaHaPebkEjteJnm0qUSOYeLj04wt1cnxux6gn9a McUykZjbD4e1N3jiNp62LUolsoiPl2bRtfUAll97RWLlW5WlmX idXMGskV1p8W19Oo7dztTj/oSn5sufBFH7JFJ242EB%20QUSJCVSCvPzKZZdKmOaCVVFVX2Jn MW5X47j0rczY3b8xru0IiRxP%20E6cAS9l9zhNzdnrCxkEvle1 TeFifieXcaQjl1w2nCD4OCTnJvUmGZNW9Jj1CK2Hf2RC6d34Sq 7ZnLEem6E%20nBqZlcsG3Zm5v6HhKflU5Aezs9rh2L%201/%20i/%20YXvE8TElkG2Di/CYnUk2vdlcibhIdcZk4XK8Yd8iUuIwr3mT0Yuu4e4a9PMMG8EV 17tKf90FVcC0oit7iQYHUSWZDI2wBfXvxyld2TumHZeTKHfWJ4 %202ALTv1HsvpaEEm5xRQGG0IirxP26jJzbTow7qAPsbK4Z/Vg6Np7vH19gokWjVVxXw1Uxl1JIvPjgnj88ClBsRkUyB4lUpJD xM1F9GjSjunnXhP/7i7rHLrSa%20wajl57yJMnD7m6ZzoDOg9kwbkgEnMkohKp434l JFJHcCbVrEwiLwcHcmVBLzqP28u%20wM%20kRf2ESz97Vt98xa tTU2lXKpGFYZyY0IE2w2WnvtMqVSEVwpX0Lgg/j1%2045jaN3m26UK/1JPY%20U1yzXSsl0qRyVr1gtJHICwH%20uC/ui83Y3Tz5kEr0jQUMdFjFojtRBJ%20eQQeVREqR5sXgcXoFo3p 0ZZjrAR6%20TSUn9gIXJjWiQcOeLFVe8ygtySbyxlL6turD4qv D/Yx64JXencdQAjJ05n%20qRxjHW2o93fGuCwQ1Qiq5dV/ZYSEqkfP%20qyRL5PjOTqbGs6TDyGn98ZZvYYwpq770iOPsuEF vVp8Of/l79a9mfMpOnMmj0TJ5v6/OvfWjNonAtHnn8iLf0zSalZFElKPw2W8PnJKno3asmk079ycJI 1Deq3ZsCYSUyfNZuZTjbU/9e/0XrgWFwOPyc%20o4AW5uaq5waGhoaqz5b87uwmdHG5TnhCJNdm d6bjxKP4%20p5hZs8hrLnzjqTos0w0Vx/3wLEuHH4eT0ZekfxRGyXSsrpASfwZJlg0ZMhWX167L8bGrAfzr 4eQlK8YW0m6Dz/YNafd9LO8TsjF3MJCFXdISIj6uP/AOeJh44aDL54TWZ5lOYkMiSXixnx6dpnIyEPBeJ2ZR//hq7gR%20onoC9NUEil5d4IJVm1w2PaYj2V3xIEkj4zkNLIKi1X Pni35/JwNts1p/S//ZMJRf2KypLX2OZHlqdWG37WSyKBo%20YfvPl0nsO%20JBz/OH4TDymvcjs4h6tJMpUS%20I/v9Q%207tnoF9956MXHSAe6FJ5BZJkWbe5rarBU07z%20BiYBx5 ysNxSfQZJlu1Z9w%20bz4mJpD46gEX921g2aLFrNh8kIuX1mHf sgszTvkTnV12DK8NfGtjjEIi9cxanZbI5FzirsygU6fJbF8/ko62q7nzLoW8hHNMaNEAy05DGT1uEpMmT2by5Ek4WNfjL99Y0t dxJvufRuFxZjVzVpzE91Om6qLngpc/MKBJS5xP/sq5LUuZN20SkybJ2k9mkoM19f7yDZZ9HZmx7wlx6TpKZFIuce4 zsLYui/vncGXc5r8X9wz2PYnE8/xmlmw4h39CWdyFr90Y3syc7w4H8fbCXNo16seqxx9JK73FXPKB w6NaYDH2CK/isoVE6rhfiUqkjuBMqll5iYwnJ/4n5nW3wcJpK6sduzBk5XVCEnJIvFQqkR/45D4bawtb1v7yjpTSOySAorCrbHRdyXEP2bNjlYMsCGDHUHPa/8vfGX/kJdFCImss%209pJZCzZ8TeY36sbkzauwrHrUFZcDSIqV0LiZYV Eetw8yWGXIfS26sa4lSd5FJ5KXul1oUUhhOy1o02HcRzwjCRTe ad10esDjG7bmanHH/Pw1hXOnb9PYEQUMfHxJGfk8unOMvp2HMmWX5XXYtYYna9zRUIi 9cx73ZbIAiQxF5jSsQPWrRrQeeltwlPykSSeY6J5YwZ9f4Nn/mGEh4cTHv6a28t70rC9Mwcf%20hGZkcvbM5No36I7s449IyIzn 9zEYK59P5AWrZzY5/mRmOgIPryTtVW8Xt9eTs%20G7Zl44AG%20kRnyb6vQ7jmRykpk Uj6S2ItM7dgRa0tF3G%20T85EknWOiRRN53E%20/iHsiBx74Epmey5sTE2jXoidzjj3lY0Y%20OYnBXF1hS8u2Y9jn EUNq6AnGt7Ok/6LTPI/MoKAgnQ%20PdjK6bQvsNv9KxOdCIZE67ldCInUEZ1LNKkpkniS OK7O70cq8NZYNOrPo2isS8iQkqSTyDR7r%209PCZg6XQz6pKk6 yIUkiLjKziyXdpx/g13efyctNIuTGGoa0ass3DUaw8/FHPheJSmRNpV9bicyVxHF1Xk9sOrekQeeFXAmMJ7ekhGSZRJoP Yvt3XbFu0YFW9stwc/8ND19//P398Q8IITIlkTSf3YyxtsZ%20xTm8YjLJTXvH/c0jseo0gf1Pg7izdRzDu9iy/Lw30dn5ZEU/59CUHnR22s5D2RMBRCHS6JuGkEg9Edd1iZTKHo8zqT3//Gtb5l1/S0q%20lBK5RMruci592LgMYtEX10QWxT9j/8yBdOlux%20hJ05g8xo5u1n2ZtO0OYWl5XzwItshA10SGJ%20U jj3uyLO42zPspjGRZ3EnncLYw%20zLuCtdEQmHMb%20yZ2p/O3W1xcpbFbUtX635M3n6Xt2n5FBfE8HjvTOy692Lw6ElMnzYe% 2097WdB/5PRf9E8gpFs%20J1HW3EhKpKzlTaldJIqUSoi/OZJLFv/HfrWdxKfgTudKSMokM8OLyDCtaDNvM8w9pFY8LRZ94cWQeg7v1 wHaUM1Mnf8fg7l3oO3Ezk92e8iopp1Y%20J9KUsqVNLFpLpFRC zOU5dGv8Da1nnCcgLpcSlBLZoiPd/%20v/8m9//jt/t%20xKt9596devn%20I1YCxb7oWTmPqRh7tnMrhXP4Z9N4kp44 fTy6YP4zffJCQpk/gXB9gzoTs9%20g3nuynTcB5lSBE9n4UxAJ4itrtEmtzssKidQZ naJhnZPIkkT8bp7n%20otIMuTfTVhMvM91zv34M4GJ2fJPdtK8 dzy6dIEHwSnkqD7qlZAadIeL118QkaEURGkhKW8e4374B1YtXc TiFZs5cP4hrz7JHtr9JfiS1CDuXLzOi4h0ZE/Skf1UuxJZksjLWxe4/iKCDHljWdw3OHf2ZwLKx31ZEXd2hbjvKuJOL427gMSQR1w%20J It7MUtWbGa/LO6E0rilFCa/5sm1o2xbs4zFi5exbtcJbnpHkl6g%20G5t8YifL/NbnSlCIqtDydSXKSEp4A6Xrj/nQ1quXPKKP/nhe%2000526/JD5Tdke1lLz3T3C/dJ%20U5HjePrrCpYfBJGVV%20ppVpBSmhvHs2lG2rpbtayvYtO 8c94PiCEsrpqC2fu2hqadQTXyaJbKEpMC7XL7xjHepCsEv/vSSny%20e47ZfHBnya8il5H14xtWLlzl/5ChHDx3k4MFKr8Nn%20fVNMtlFUvITQnnsflie/6XL17P79M%208jMmQPzdUmp9IQtB9Lu3fyMply1i5aS8/3vEnOiO/4ocRNeMRk/UnICRST4Z1TiL15FFV85L8TFISPpGQmkWBRLvHWFRbIqtasZ7T 5HEn/k7c0kKyUxP59CmJ9Lwi%20fPOSlcpJLKUhHb/C4nUjtdXs3RJAVmyfS0hhcyC4gr7moyBuDu7ZrYEzRJppDgk%2 0WSmJJGYnE5ukeKDetmapBTnfiY5MZHUzDyKSsQ57DI2xv9NSK SejIVE6glQQ/M/UiI1hPa7s4VE/i4etTOFRKpFI2b8DgEhkb8Dx4Cz/jCJNOAYRFeGJSAkUk%20eQiL1BKihuZBIDYD0mC0e8aMHvEpNx SN%20KgGp4T%20FRNYMcCGRNcO5Nq1FSKSe2RISqSdADc2FRGo ApMdsIZF6wKvUVEhkJSA1/KeQyJoBXl4iHRwcmDVrVq17RUQov6u9ZpDV%20bXUiESuXbtWt aElJSXVKahCIo2bTiGRxuMrJNJwbE1NIn/44QfVMTcmJsZwAzXRnmq7RG7dulWVr6ioKBOlDOUl8k9/%20pPqCxVq0%209eXl4my7c2BlYjEmlmZqba2GTPBKxLP0IijZ tNIZHG4ysk0nBsTU0i27Ztqzrmyp67V9d/artEWllZqfLl6%20trsukSEmmyqfnDAhMSqSd6IZF6AtTQXEik BkB6zL506RL79Xv1JTU/XoyXBNxY01hmEpJNIwHGuql9oike7u7qpjRumxozb8X79%20fZ Wki0qkYbdqIZF68hQSqSdADc2FRGoAVMdmC4k0TEKFRBqGY031 UlsksqZ4GHo9nTp1EhJpaKjK/oRE6glWSKSeADU0FxKpAVAdmy0k0jAJFRJpGI411YuQSOOSFhJ pPL5CIvVkKyRST4AamguJ1ACojs0WEmmYhAqJNAzHmupFSKRxS QuJNB5fIZF6shUSqSdADc2FRGoAVMdmC4k0TEKFRBqGY031IiT SuKSFRBqPr5BIPdkKidQToIbmQiI1AKpjs4VEGiahQiINw7Gme hESaVzSQiKNx1dIpJ5shUTqCVBDcyGRGgDVsdlCIg2TUCGRhuF YU70IiTQuaSGRxuMrJFJLDi6EAAAgAElEQVRPtkIi9QSoobmQS A2A6thsIZGGSaiQSMNwrKlehEQal7SQSOPxFRKpJ1shkXoC1NB cSKQGQHVstpBIwyRUSKRhONZUL0IijUtaSKTx%20AqJ1JOtkEg 9AWpoLiRSA6A6NltIpGESKiTSMBxrqhchkcYlLSTSeHyFROrJV kikngA1NBcSqQFQHZstJNIwCRUSaRiONdWLkEjjkhYSaTy%20Q iL1ZCskUk%20AGpoLidQAqI7NFhJpmIQKiTQMx5rqRUikcUkLi TQeXyGRerIVEqknQA3NhURqAKTjbEmsN7cfvSIhq4ASHfswRjM hkYahKiTSMBxrqpdaKZGSOPzuPiY4Lp08UzqIVJE0dRIpzYzml e9L3iZkkS%20poqF8koTsxA%2088vXEwzuQD4lZFEqkFRYuzvp EeJAPXj5BfEjK/mJ%20hYXr2B9CIvVMqJBIPQFqaC4kUgMgbWdLM4iLSiT18RbGL TnLy5AQIpNyKSyueFDUtltDLS8k0jAkhUQahmNN9VK7JFJK5qd oklKfsmPycs54BhIclUR%20QVFN4dJ6Peoksjj0HEsmTGfr3bc k5lVxDJRmEv7gKGtnjWfM6NE4Ojgweur3HPk1nNRcmXVKyX7/K8fWzGKc0yhGjXRkzLTvOfzwLSny%20VqHWusaCInUM2VCIvUE qKG5kEgNgLScLc3y4%20yG5Syd0JPm1sNwHj%20ZNecDSMo0jT cAIZFaJlTN4kIi1YAx0cm1SiKl2QRc3MqqZRPobdGZoePHMmn1 j0TEpZsoXVAnkUVeP2DbshNTTr4kOvtLiSx4d40VDj3p%2090i thw6xZnDW5ht15kuIzdwMyyJvIIIbq4eSa8%20Y1j4wwFOHN/NIoeudHXcyO2wZKryUpOFpGNgQiJ1BFfaTEhkKQnj/C8k0rBcpXnReN9wY1YfS%20r/04xeUzbw49MIstSfyzFsABp6ExKpAVA1ZwuJrCYoE1msdklkPj F%20t9k/dwBtG35Lkx7OrDn5iKT0XBOh%20WUYukmkhIhz07GxHsnG269I zi8BSRbvL82je8uBfH/rNQnxj9k23p6p2%208SmpSPRJpH9MXZdGk5hPUPw0g2jc/mXwIx4BQhkXrCFBKpJ0ANzYVEagCk9WwpGb6HmDF6Ogsn2TJ43 nE8YzIp%20vJDuNY9G6KBkEhDUAQhkYbhWFO91CqJlJ3EzfTn% 20NzxzJzvjN3QeRx5%20pHPhSZyEKkiabpJZAnJgXc47/6Y8ORsiuX9Ssl%20vJYBFr1wvRpMXGo0AU%20eEhD1mVzZApIs wk5MpmMrB354FE6qolEVEdWdSUIi9cylkEg9AWpoLiRSAyCtZ0 vJCbvFGXcv3vrf4tS5x7xLyVEeILXuzOANhEQaBqmQSMNwrKle ap1E5oRz9/w1PF/7cfvHCzwKSyDLVD6JVpE03SRS0ZG0RCq79FHxkx/N/TVDaNNpEoc8IslU3YxTRNSLyxz9YT6je9swaO5hnkSlY8JeXQU l3SYJidSNm6qVkEgVCqP8IiTSCFil%20eTlSygpKSAvr5gS2UH SRH6ERBomEUIiDcOxpnqpbRIps6r8vHwkJRIK8vIoLilReVZNM dNmPfpIpGo9RUn4X1yFfefOjFxzleDEXFQOKc3C5/RqZo%200ocW3Deg0bjt336aY/F3rqrHp8YuQSD3gyZoKidQToIbmQiI1AKpjs4VEGiahQiINw7G meql9EllTZAyzHn0lUpofh/f5dYzt1Y3Bc/Zw73WK4vR1aXjSAhLDA/B%20eo/LO6fSp11XnPc%20IeJz3b8oUkhk6Uag4/9CInUEV81mQiKrCaqOLCYk0jCJFBJpGI411YuQSOOS1kcipTkf eXRsKY69euLgsofbwQnklJ66l%20STmfqZ7MJi1fN2Sz4/Z9OQlrQdfwjfyEyTrtAagrqQSD0pConUE6CG5kIiNQCqY7OFRB omoUIiDcOxpnoREmlc0jpLZNEnPI8vwr5Hb0YvPcLDN7IKZNnl P8Xht9ixbB0nX0SRVqCcXhjEnpGtaTv2AN4RGSq5NO4I/7jehUTqyV5IpJ4ANTQXEqkBUB2bLSTSMAkVEmkYjjXVi5BI45L %20XYm0aIvD%20gvc8wwgMDBQ/gp6G0tGfgGJz91wtjHHapgre9wf4fVSuUzQa6LScsl7f4nZ3dv Sc/p%20Hr5NIy83hTd3NjKiXTtGbHlIeGqhqEQaIrVmZmb86U9/kr/Cw8MN0aXJ9CEk0ripEBJpXL6m1ruQSMNkREikYTjWVC9CIo1L% 20ncl0rw%20DVvb0Kv/IAYNUrwGzzrAi4%20vub60H2b//hf%202apLhfmDBk9k2/13JGXG8fzwPIb06MWQ76Yxe5YzDr1t6DN2LVf8P5EtHvFjmMQK iTQMR316ad68uUrk37x5o09XNdpWSGSN4v7DVyYk0jApEBJpGI 411YuQSOOSVieRJZ98ufHjEfbu2c3u3WUvt7OPeJcUQ%20C98x zbv6fCPPlybie4F5JIZqGUwpQ3PL5ykE3fL8TVdTFrdp7gll8U 6SbyBQ7GJQvidLaehEUlUk%20AGpoLidQAqI7NFhJpmIQKiTQM x5rqRUikcUmrk0iDrbWkgMyUBOLjk8nIL8aEnppmsCGq60hIpD oy1ZwuJLKaoHRcTEikjuBqaTMhkYZJnJBIw3CsqV6ERBqXtNEl 0rjhm3TvQiL1TI%20QSD0BamguJFIDoDo2W0ikYRIqJNIwHGuq FyGRxiUtJNJ4fIVE6slWSKSeADU0FxKpAVAdmy0k0jAJFRJpGI 411YuQSOOSFhJpPL5CIvVkKyRST4AamguJ1ACojs0WEmmYhAqJ NAzHmupFSKRxSZeXSCcnJ%20bPn29Sr8jISOMCMGLvQiL1hCsk Uk%20AGpoLidQASI/Z27ZtUx1I4%20Pj9ejJcE2FRBqGpZBIw3CsqV5qi0TK7kwuFbC oqKiawqP3espLZOnjBk3pf09PT73H%20Ed1ICRST/JCIvUEqKG5kEgNgPSYbWlpqXrsU3BwsB49Ga6pkEjDsBQSaRiO NdVLbZHIjh07qo4Z3t7eNYVH7/UIidQbodoOakQiT548yc6dO%20Wvz58/qw2mNs4QEmncrJ05c0a17aSmphp3ZQbsvXzcKSkpBuzZcF0JiT Qcy9atW6veXGXfevFH/5w7d0613yQlJf3R4Rh9/e3bt1fx9/PzM/r6DL0CIZGGJlqxvwsXLqj2h1IX%20aP/r1evnmqbFZXIivn6qv4SEvlVpbtODVZIpOHSaWoSabiR1Y6ehE TWTJ5qayWyZuhotxZra2shkdohq5tLC4msm3n9GkYlJNJwWRYS aTiWuvQkJFIXatq3ERKpPTN1LYREqiPzlU0XEvmVJbwODVdIpO GSKSTScCx16UlIpC7UtG8jJFJ7ZupaCIlUR%20Yrmy4k8itLeB 0arpBIwyVTSKThWOrSk5BIXahp30ZIpPbM1LUQEqmOzFc2XUjk V5bwOjRcIZGGS6aQSMOx1KUnIZG6UNO%20jZBI7ZmpayEkUh2Z r2y6kMivLOF1aLhCIg2XTCGRhmOpS09CInWhpn0bIZHaM1PXQk ikOjJf2XQhkV9ZwuvQcIVEGi6ZQiINx1KXnoRE6kJN%20zZCIr Vnpq6FkEh1ZL6y6UIiv7KE16HhCok0XDKFRBqOpS49CYnUhZr2 bYREas9MXQshkerIfGXThUR%20ZQmvQ8MVEmm4ZAqJNBxLXXoS EqkLNe3bCInUnpm6FkIi1ZH5yqYLifzKEl6Hhisk0nDJFBJpOJ a69CQkUhdq2rcREqk9M3UthESqI/OVTRcS%20ZUlvA4NV0ik4ZIpJNJwLHXpSUikLtS0byMkUntm6l oIiVRH5iubLiTyK0t4HRqukEjDJVNIpOFY6tKTkEhdqGnfpvZI pIRP/g94FhLPq4wS8ku0H6uxW1QtkVKy4l7z0us5Hq9iyMwr/iIMyecIgv085fOzys8vTOF9UAgfk7IpkHzRDIpS%20fj6I4lZ% 20VTsVUJOUgSh/j54%20wXL2xdKpFV0UPWkP1U9WUytLgEhkdUlJZYzNQJCIg2XE SGRhmOpS09CInWhpn2b2iCR0swEYpNTebprKt%20f8eRkRCqvo pPJLyjSfsBGbFG1RBbz9vJKJtn3oEHfz6Lpn8Cj4nIfrWJqaNH IjtwrOExWYqIywk7tFeXMfNZOfDdyRVbATSAuIe72fhnK3cfP2 J7NI%20pVm8/%200Um1wnM37cWEaPGsX42Ws48egdqblVmeiXQIREfslEqylCI rXCJRY2IQJCIg2XDCGRhmOpS09CInWhpn2b2iCR2YFX2LFuFVP 6WdLVYRLDXV2Zvv48EXHp2g/YiC2qlsgi/LYPxbLen/nf/9aVFbdek1RQLghJDFfm9aLpf/wv/m/fjfiEp8pnFsU/Yde4jvzjLy2Y9KM/MTmllghIc4j2PMdKhzb8vdFI9np%20JENemS2k8MN11jj2po%2 0TC%20vdjnB033qmD7Km66hN3ApLIq9cN%20WiqPCrkMgKOLT/Q0ik9sxEC9MgICTScHkQEmk4lrr0JCRSF2rat6kNEpkX5c31Pb Po16Yh3zbpRuNeM/j%20yEMSPudqP2Ajtvg9iWzVpi0W/6iP7fo7vEkuVEUhib2G66D%20dGz0Z/7bdpNCIos%208XTPFIb1acc//60108pLZFE8Pu47cXGypb9VA/69gWOZREoiiTzvTDdrB9bdCCIpXwLFmby7OI/uloP4/lYoCQWaLVJIpCo9uv0iJFI3bqLVH09ASKThciAk0nAsdelJSKQ u1LRvUxskEmkmgadcmTB9HuNsh2HXbyZHn0XwuVCzEGlPRPcWv yeRrbuOYepgS9qO3My9sBQUGikh7qf52DrMYVy3%20pgNl0lkA gnP9jLV/ju%20XzuJbs26MutsuUpkjg8nVy5g0doDHFs%20FIs248oksiS RxJfunL7wC28SM5XXSUrJebKeQZa9cLkSSFzl0%20JVDFdIZBV QtJkkJFIbWmJZUyIgJNJw2RASaTiWuvQkJFIXatq3qR0SmUPY7 dNcfvYK7xsnublnLw9D48ksqkUS2W0GblvG063LaLY%20fEuq7 HJOSTw3FtoxYsURVg5vjYX9Jjye3mD/tGGMXnGO5/e34NCuJ7PLS2RhHKF%20IUQkZRJ1bgadOowvk0hl%20qUlUihF UxDLL%20uH067jRPY//0hGNS6LFBKp/X5UoYWQyAo4xB%201iICQSMMlS0ik4Vjq0pOQSF2oad%20mVki k7DLA/DzyJRIkBXkU5GRTJJGoPEn7URunxe9WIrvN5My9I8zt15WxO38 jPK0IyadbLLZzYMXlh%20yZ1ImWw5ew29WRYaOWcsYjmtTA/ThVlkhV6CXEX6haIlWLFKUQ5L4OR5vOOKy8TMCnHKrhkAiJVBH U7RchkbpxE63%20eAJCIg2XAyGRhmOpS09CInWhpn2b2iKR2o% 20s5ltoksizfr5cWtSPbuP38Ph9KrE/L2Www/dcfhnI6VnWWHTvQScrOxadfE5URiFFoQd0lkhp/if8rmxmYt9u2M7Ywe2QJHIqPgdILSAhkWrRVG%20GkMjqcRJLm R4BIZGGy4mQSMOx1KUnIZG6UNO%20jZBI7Zmpa6FRIv0j%20XB 9AX26O7P/iScXlgzBfvkl/KMjuTy7E80a/5n//bc22E6YzcJly1k6tT8tvqlHu8GTWHLiOdFpeeWqr%20orkdKcS J6eXsmYPj0ZNns71wPiydbi%20lEhkeoyXM3pQiKrCUosZnIEh EQaLiVCIg3HUpeehETqQk37NkIitWemroVmiYwhS3Y3du%20eT PlhLWN6DmXZxZfEZiXiPqsTzS1b03%20IA2PGjJG/Rg/uSIN//4ZmXQYxfutd3iXmapbIogR8zizHsVdvHBfu566sAqnltaNCItV luJrThURWE5RYzOQICIk0XEqERBqOpS49CYnUhZr2bYREas9MX YvqSGRucQxX5vaie7c2NLJ25cLLGHIkybjPtsZioAsX77wgNDR U/gq%20tYpB5h0Zs8WdJ%20Gp5BWWv6KxikpkSQopHnuY2r0l7Yf MZZf7Y7wDggkODib4VRjRabkUVuObfoREqstwNacLiawmKLGYy REQEmm4lAiJNBxLXXoSEqkLNe3bCInUnpm6FtWSSGkxURdn073 JN1hMPo1fTDYlJcm4z7Gmpb3yOZHKFWh7TWRJ0j3uLepMs//8V75t051%20tkMZOlT5Gj6FnQ/CSarG08aFRKrLcDWnC4msJiixmMkREBJpuJQIiTQcS116EhKpC zXt2wiJ1J6ZuhZVS6SEBJ9rnDr/gNDELGRP9imO9cT9xGEuPY8kLbcEpLm8fXiWk9c9%20ZSWp%20 q%20JCWAm6cv8jA0kcwvvuFRSvabB5z98Wf849ORPUNcmhZE4E %20HOLhzK1u2bKn42naQW4GfyKjGtZFCIlUp0O0XIZG6cROt/ngCQiINlwMhkYZjqUtPQiJ1oaZ9GyGR2jNT16JqiVS3tOlOFxK pZ26EROoJUDT/wwgIiTQceiGRhmOpS09CInWhpn0bIZHaM1PXQkikOjJf2XQhkV 9ZwuvQcIVEGi6ZQiINx1KXnoRE6kJN%20zZCIrVnpq6FkEh1ZL 6y6UIiv7KE16HhCok0XDKFRBqOpS49CYnUhZr2bYREas9MXQsh kerIfGXThUR%20ZQmvQ8MVEmm4ZAqJNBxLXXoSEqkLNe3bCInU npm6FkIi1ZGpYvqOHTtYtmyZ/JWSklLFErV3kpBI4%20Zu165dqm0nMTHRuCszYO%207d%2082% 20biFRBou4aYmkXv37lVtf/Hx8YYbqIn2JCSyZhJTWyXywIEDqv0hOjq6ZmBpWIuQSA2Ays82 MzPjT3/6k/wVHh5eflat/11IpHFTaG5urtp2ZA9VrS0/FhYWqrhDQkJMMmwhkYZLi6lJZNu2bVXbn7%20/v%20EGaqI9CYmsmcTUVons1KmTan/w8vKqGVga1iIkUgOg8rOFRJan8cf83rx5c9VO9ObNmz8mCB3WK iRSB2jVbCIkspqgqrGYkMhqQDLiIkIijQi3XNdCIsvB0PNXIZF aABQSqQUsIy0qJNJIYNV0KyqRasBomNyqVSvVh52goCANS5vOb CGRf2wuhETWDH8hkYbjLCRSC5ZCIrWAZaRFhUQaCayaboVEqgG jYbKQSA2AqjlbnM6uJigTWczKykr14cnX19dEovoyDCGRXzLRd YqQSC3ICYnUApaRFhUSaSSwaroVEqkGjIbJQiI1AKrmbCGR1QR lIosJiTRuIsQ1kcbjWyPfWCMk0ngJrG7PQiKrS8owywmJ1I2jk EjduFVuJSSyMhHT/ltIpHHzIyTSeHyFROrJVtydrSdADc3FjTUaAOkxW9xYowe8Sk3 FNZGVgNTwn%20KayJoBLk5nG46zOJ2tBUtRidQClpEWFZVII4F V062oRKoBo2GyqERqAFTN2aISWU1QJrKYqEQaNxGiEmk8vqISq SdbUYnUE6CG5qISqQGQHrNFJVIPeJWaikpkJSA1/KeoRNYMcFGJNBxnUYnUgqWoRGoBy0iLikqkkcCq6VZUItWA0TB ZVCI1AKrmbFGJrCYoE1lMVCKNmwhRiTQeX1GJ1JOtqETqCVBDc 1GJ1ABIj9miEqkHvEpNRSWyEpAa/lNUImsGuKhEGo6zqERqwVJUIrWAZaRFRSXSSGDVdCsqkWrAaJg sKpEaAFVztqhEVhOUiSwmKpHGTYSoRBqPr6hE6slWVCL1BKihu ahEagCkx2xRidQDXqWmohJZCUgN/ykqkTUDXFQiDcdZVCK1YCkqkVrAMtKiohJpJLBquhWVSDVgNEw WlUgNgKo5W1QiqwnKRBYTlUjjJkJUIo3HV%209KpDQnjtcvvfF 88YIXL17g4eGBp5cP/qERJOcUUyIFU5RIaW48b176qOJ%208cIDDw9PvP2CCItJI6%20 4BKmSuyQnkY%20h/vj6BvA6WjGvNCV/dCVSPg7/snHI%20Xv7ERQWQ1qegr8sVsNKpJTc%20Df4%203jKcy7L%20w sPDzw8vfELDCMmLY9iWeIr/BSR8iGUiJQ8CiUVZvzuH4atRMriDtMybihK%20cDriBRytQhcZ 4mU5vIpzB8fT8X%20pNqnvH0JDIsmLbcspypwRSl8eB1JSm4hW qClepVIKbmfwgioIte%20gWFEp%20VWkWsls0jtmMnGU5MSKc3 9xNsA3y%20PAb6BvIlOJbeo7BhQyroo9SOvI5PJqbQtVKsSKcv t2wB8q8rtm2hSc4vkx8vSdSn%20LyL14xsik3MoUCZXkvaRqNQ 81d8Vl1f8ZQoSWZmv4tjkS6DasYKM7xsZ37LB8jE4kPD4bAqKq xqpYppxKpFSchPeEujriYfy/a30OOcb%20Ibo1ByKJF8e51IjZPnKLsuPJI0I5Rjy1YxBP4mUk pcQrjbOqGrGKUmL4FVQOPFZ%20agJE8NWIkvj9irjW/o%20LNsHo1LIKZKo3odlmS5OjSAsMpns/LIjXUTIa8LjslDHVtZOG4kMDg5Wva%20VbbNRpOQU8kW6FUERE RZJcna%208vgrIS3iFUHhcWT9TlCiEqnYd5F8uMyysQ4MGTKM4 cPtsbe3x0H2GjWBOWuO8kv4Z75t2ET1vaDh4eHKln/sf5KIq6wcP4Ihg4cxTBm3LPbhw%20xxmrSAbVf8iM8uIOPdL5z Y6MpU54lMHPcdY6csZOslb2KzCikB/miJlEReY9WESuMYPgx7p0ks2HoZ3/gsCksMLZESIq%20tZuLIIQweNozh9oq829sPZ5i9E5MWbOWyTx xZshXLf6QUxD7CzXUWux5GkZZf%20cCrflswrERKiPxpNc4jh6 qN%205JPbLm4QVoQy6O985m96yGRqXkVDmjqowadJVISyU9rJ% 20E4dDDDhg2X70%20y7dJenlNn5m%205hHdsJgUqtAXEPt7L/Nm7eBCRSl710VZTIkuIvL6WSY5VM3Oev4VL3rFkqgKSMYvj8b4 FzNn1QP6hQYuQalQiS6JusG7yKIZWdQxwns%20Wi17EZBbI93N ZruXj2r%20QOTvv8yG54rZQLYksieLG%20imMGjqYoZVzO8qZ% 20T9cxCs6oyy3SCmIe8L%20hXPZee8Dycrk5rzYx/Gn0STmqCdrChJZEnWTDVOdGDp4aNkxVrYdy8d6Ac/oDPJLt2Ml3ycHFjF3513eJ%20Uq9rWcF%20yfM41NV9%20SkK1 %20vMaRyBKibm5kmtNQBg%20tfJwbhbPrD1zwiCJdNQhZvp5yc PE8dt4JJzFXGW%20uBwfmTmeTexif1IxBP4ksIfrWJqaPHqYmz s2crxxn/FMOLakYZ67HQeZN34T7m0%20oCdPAEimLe7M87kF2X74Pj5roy ubzL4j8nK/cB6U8O7Ial50/E5aQozoWH1qwjI1XXhOfpX770EYiXRYsrmL/nIjr5nO8iPhcYZtFWkD8s8MsddnJz2EJKHbJXDwPuTJz42VC47 JUcVZ%20vxASqSRSFLiVfg3q0em779mwbTd79uxh967trF/gSKdmlgxacYN/%20c9vTU8iX%203ErtG3WDkuY/1WRdx7du9i%204bFjO/enCbWkzjy/BmnF9jRpYcT8zfs4cCB7Xw/riftbMbj9iSWzELpHy%20Rr3YxuEk9rEYuZZ18HLvZtWMDiyf0 oEUTa5wPexGfVUSz5s1VOXjz5k3l7VnLvyWE7B5Ck3pWjFy6jq 279yjzvoMNiyfQo0UTrJ0P4RWfRZFUSk7UC35cPgTzvzbkuxOh fPqdN7/KgRhaIkP2DMWsnhUjlqxjyxdxm2E98SAecZkUSUGaE4XH2e8Za vFXGo45zqv4bLUHhMpx6y6RIbgNa0Z9qxEsXruF3XtkbEtz2hN zM2smHvAgNrMIqTSHKI%20zrBhqwX83HMOxV3FqD/6V45P9Xb1KpIRQt%20E0a2CFw%20K1FZktmUhPcxmzA7yIKWUW jcfZFQxr%20d80HH2M4LjqM5PFVJOVSEnoXhxaNMTKYRFrtpQd A3ZsWMLEXhY0tZ7A/ufRZBRJkeZE43luJcMtv6HR6CMExlZ8c6iWREpC2TfCnIZW9ix c80OF3C6Z2AuLptZM2PeM6IxCpEjJifbk3MrhWH7TCKcjAcQo3 yQzrs1m6ZXXRKWXM7BKCTYFiZS83s9Ii0ZYDV/A6h9kfGXb8UaWOPemZVNrxu99SlS6bKyyfS0ar/OrsG/1Nxo5HeJldKZiX8v4iTlWLRm104eI3xmvcSRSwuv9jrRsZMXwB av5odzxYuMSZ3pbNqPTODceR36mUHaci/HiwmoHWv%209EaMO%20hGVqZSajOvM62jJqB3efPxcdc70k0gJ rw840aqxFcPmr2Jz%20TiXOtNHHuceHkeUi3PNCNrI4jzgS6Qy zozrLnRqNYrtXh9QE6aBJVLC64OKuC3sl7Nqc7l9cONSJvVpRf NOY9n920c%20F5aQG%20ONc09LGjnuxzsiQ/XhzrVbP0Zt8%20B9WtVsZbuGNhLZa/JmXFZuLrd/bmTppL60at6Jsbt%2040OaYptFmkuM90XWjmzLPxo7ss/rIxnyEDK4Mb8LrUdt5cW7NFWclXZRhEQqicglsmELJpx5S1LpJ y%20gMDWII%20Ms%20WfbOfyP//VvKoExmUqkXCLNGH34dcVPuEXphLvPxfofDRmxbgl9zVrhsO1X 3qfLKo/FpIceZ0LrJthuekZ0erGJSGRTRh8MKfcpt4j08KvM6/JPGo48QGB8Fk2NIZFNnTj4Kp7yHwCL0t9x1aUL3zYawYHAKMI8 L7NjriMD%207Tl2z/Xr0IipRR8juVtkC%20eHp74hURWOK1nFIls6sSB4Lgv43a1oV6 jEezzjyMtxpsrO%20bhOLAPbb/9M/W/kMjfj1tfiWzmtJ%20gWOUbqXxfKyL93TXmd61PoxH7eBkRhueV nbiMGkiftvX4c/0xHAuuKJG/x1XWpVYS2XwU%20wJjKX1flLWX5fra/G7Ub%20zAXr8YUmN8uLLThVED%209CunozZ0UoSKaUgPZZwZa5 9X1XMtazPmpfI5oza6090Zrk3oKIM3v%200gB4NGuPg5sOHN16 473LFaVBf2tX7C/X1lITLchAAABy3SURBVMgWo9x4GV32JghFZLz/iYU9GtLYYQ8%20USnE%20rqzy9WJQX3bUe8v9Rl9uLJEBhEc8p oAX1%20C3ieSVVjxtJ/pSKQ5jnt8iVK8u8q2GjLeX2dRr0Y0sd%20NV2Q6BfG%20XN09n 9G2Mr7/Sv0qJfIFgb8zXqNKpLkju30iKe%20wRRkfuLG4N42b2LPTI5zX 3tfYs2A0tn3bUf9f6zPqQBUSuf0ZASFvCJTnLKFCzgwikRaO7P KO%20DLOJX1oYjacnS9K4xyjjLNB1RL5NICQN4H4%20QbxPiGT gnLncA17OlspkRaODHYLqyjYRRl8uLmUvmZmDN/%20iOcP3XFbOIbuTf%20DBo77vpTIrU/wf/WGQD8/gt4lkFlQXOEDvzYSOWjjczw%20fC4nf0VkfLjJsn5NMRu%20nW fvPyMp/sTLn9xYOMaOfu3r828NHNlbhUQ%20fvmKN4FAW9IyGzgOJyxVI hkfI3NlAnkVCI59ru1G88iv/xP/9v7ZFIWQXAcx196n/L4NWH2b7lJA/ffyZPeQmGNPsXlnRuSPelD4hIK6Rps2aqsYWFhSmp1Nx/EnklsrJEyj7Ze7G%20X0O%20HbIT/7jMGpNIpDl4behPo3qD2eEfxr3985nlspr9xxbTv4E5E0%20Wr 0QW8cnnCruWz2bKZGcmjHPC0WkSC3fdIjQlV77D1ZREyuPe2J/G9Qaz3S%20GuOeHWDDLhVX7j7J4QEMsJpSvRCri3r18DlMrxR2 ijNvwEinLqTebBjah/uBt%20L65y4GFs3FZtZ%20jiwfQyGJCRYks%20sSBjcsqxrfzF iEpOaoDmb4SKWPmvWkQZvUHs80nmrgXh1k424VV%202TMGmMxo XwlsohPvu7s%20b6U2WgcnZxZsPMmr5Jz5JVfk5FI2THAZzO2T Rtgt8WL0LuHWDxHOa6BTWg5Xr9K5JcSKcutDz/YNaOB3RY8I2N5cXQxc1xWsffIEgaZtWR8pUrkpGUrmTltGs5jn XCaMI8NPz4nMr30miwwXYmUjdWXLUOa09DuBzw%20ppHpfYwlc 11YufcISwY1xXJ85UpkC3p/56oa72jZeM88xz0wlc/Ka%20NqWiJl277v1qGYN7Jl0/Ng7h5ZxjzXlbgdXoJts1aM%206ISaU7vMS7MnDZdnrPRE%20ay 4cwzPn5W5MxYEimPc9swRZzPgirEade8FeMqVyItejPGZQbTpj szdvRoJsxdz5mnH/msfAOsMYlESq7fduxbNsZ2wx3ObVuCi%20sK5vZsROtxlSuRve k9eh4z5GxHI2O7/vRTPqTlqa4R108iQZrrxw6HljS23cDj8BQkOT6c%20N4F1xV7O LxkMC1aj/uiEtmy92jmzpjGdOexjB49gbnrT/PkfZrKJYRE/p5ESgtJj3jKdofm1OuyhP/nf/%20HSrRMqxLZkL4LT3Pt7iMeP37M40e/cv/GWXZMsaFJi8Fs/jWajHxJuU8kBUTf/55%20zdsx%20VQQCTklJlKJbEjfBSe5Kh/HI369f5OzO6bS1cwcu00P5aeMjHI6u1FfFpx0586jx3J%20j36 9z82zO5jazQxzu008iEzknb8HgREpZEeeYKx5K5zLSaQ06yWHn LvTedB0Vu04yNGj%209k4pQfNWgxj6%20Mo0oukGEUiG/Vl/onKce9kWremmNtt5H7EZzKjAvAIjCA5O5KT41vS2rlMIqXZ/hye1IPOg6axcntZ3M3Nh7HlURTphVI9rolUnM5u3NeV41fu8Ei 2XT5W5PTczml0b2aB3YZ7RCS8w98jkIjkbCJPjseyzUSOqyqRU rL9DzNk4hJWbj%20g4Dq1J/L4fovkc6Hi47BWEtm4D67HrlTM9bmdTO/RDAu79dyTyUAps6xITk2wpM3EMomUMTsyuRddBk1jxbaymFqYD %20OHXyNUMdV8JbIJfVyOcvnncseAm%20fYOb0HzS1sWXfnA5/eBeAZ9JHkrEhOO7em7UT9JNKszzyOXPq5Ym53zaBn85bYrrvD% 209RMogI9CfqYRFbkaZzbtGViJYns2c%20OUS4b2bV3F6sm9cH KZizbH34krUCRW9ORSDP6zD3MxZ9/K9uOd82gV4uW2K69zbuUfApiAvEK%20khSZiRnJrej3YTKEtmI hs2746gab1862HxH27GHuP8%20Fdkl1kaVyKZ9mHvoIrd/K3ecO7%20Lmb3NaTloDbfexvEu0Iugj4lkRv7IlPbtmfCFRDah kWwM8zawc%208uVk/uR0eb79h67z2p%20VIMIpHN%20jDn4IVKce5mZm8LLAet5ubb2 ApxTrVqz4TKEtmkEc27jWTehp3s3bWayf06YvPdVu6%20S5FzN opENutNl3lnOH9bto0o3ocf3DzP7ll9sLAcxKobQbz09iLoQyJ HnW2wmlBZIm1o1LwbI%20euZ6fbLlZP6U9HmzFsuRNOivL6e20 kst/8M%20w/f4vfSo%209D25yfvcs%20ra0ZNCq67xJykNaGEOwdxAfEjOIPD udTh3GV5LIzjRt1IxuI%20eyfqcbu1ZPoX%20nrozZcoe3Kfny KqmQyPIS2eBb2tnPY8mqdaxfv551q5fjMr4/bVtY892O3/jzf9czUYn8Gw3b9mHg4GEMte1P757d6NarL/3tRuO65y5hsruMVUXFIpIDLrFyaHusHNZx622a/ALbP/zGGnklUjaO3gywG0b/Pr3o1q0XffvbMdp1N3feyO4mN/yNNfJrIv/ekLa9B2A3bCi2/fvQs1s3evXtj91oF3bfeU2qbMXKH0nsqS8lMt2HU2tWsPvWG5J zZafjpGR4b2RgE0smnlJULI0ikVXF3UcR966fX5OSW%205USEk cpytLZLoPp9fK4n5NUo5sWSmZ3psYJItbKcn6ViL/0bANvfrbMWyoLf379KR7t170keXUZRe3Q1PIVZ0XKSHu9IQvJD Ld5wynn7wri09WWTNrxcQTIcQrr0nVSiL/2ZA2vfqX5bp7N3rJmDm5sOt26BfMzlSWyHRfzqxbye6boSSWMv P5gcHNWjHheDBxyiv5a14iv6Vhm570t5MdAwbQp2d3uvXqQ387 J%20bJKrfJZZVbSuL40QAS%20W3D1vRU5nZAudw6zdvJrVfJ5K hyCyVxPzKpCokcvuAoD99%20pqBEQmb4JeZ1s6DP8lu8TVa8QZ mORNajYese9LMbxoA%20vVTbsdO8HdwMTiJHdvFx6U9JPGerlM gmtB25g/thnymQyMZ7GZfuLWnyH51Ydv0NiflS40pkvYa07tFPse0P6ENP 1bY/lx03gknMLlKdOi2JP8fUqiSygxltR2zn3ps05Riu4NrDkj5Lr/M2Md8wElm/Ea169MNWdjyuFOf2G0FfxlmFRHZs2o4R2%20/yOi0fiSSTd1fm09OyD0uuhZCQJzXONZENGvG31n3oZ1tpH7R1Y u726wQmZKvOVJyf3u1LiezajXYOW7kTmkq%20bPt4586CXq3os %20QqIQmKG%20C0kchuw6fRva%20t/Nhbts3a4jR3Gz8FJpBVfpulhPgLM6qUyGbtHNj6cyip%20RIkm e9wX9ib1n0Wc/XVJ/kNkEIilTu%204saav9HEehBDHBxxdHTEcdRoxk11ZfXeq/jGZlO/sZmJSuS3dHD6no073HDbsZ55w9vx7T8sGbrqKq%20S8lSn/ZDmE%209zgXXfdafzwJnsefCOdOVpFNOQyHp0GLWcjdvdWO/iQLt6/8Ry6Ercg5NUsmHYR/yU3ljTgVHLN7DdzY0d6%20dh374e/7QcwoorwSSWFzGgKomkOIfE1578evcGl86e4NCeraydZ4fFf9V n1OFXxGcbqRJZvwOOy0rjdsFBFXcQCZXilolDZYlUxX1PGbfbN ta6yOJuwKhDwcRl6V%20JbNDBkaXrt%20HmtkOeU6v632I55Hs uByZUkAyoSiKhODeRJ7/dU3AtH99BRXyy3VcriWzQgZFL17NNlusNLjhY1edby8EsvxRAg lwKS00AmflQWSIpziXxtRe/3rvBZVmu5TENpuVfG%20B4IJAY5cWWNS%20RDekwYgnrtsmOAR twGdGBBt%202ZPDyi/h/KieQsuEZSCIbdhjB4nWy3O5kg%20sIOjT4lpZ2y7jgH092OYFU rLJqiVz50yuiS68zLEng/JQ2mDvuwjdKca2l6UhkIzo4LGLtVjc2uDrSsWE9Wtot5fzLeLI rvBnL%20KqRyA7tGevmTWS58V6Y2o6h//6vOO7wkt9wY9RKZOMOOCxay1Y3N3ZucGVkx4bUa2nLknN%20xG WVCaQ8X%20okspMVY3d7EpGuvC6qJJGL061o6biDgI%20fDSOR ja2wX7imLM5OjRRxnvUltqo4q5BIa6ux7PaIoCzMi0y3aonjNg 8%20fC4xjkQ2saLliJWs2eqG284NzHfsROP6LRm0%20Ed8YmQ3 Z5YdW6qUyG52fLfzOR8%20l7G9NLMjliO38eK94sYWbSSy95Qt zF%209RbF/znfEunF9Wg5axI/eMWSWD0YeljqJ7ELH73by7MNn5Sn1EhIvzaKT5Ui2Pn%20P7B4 gIZHKvCok0oyhm27yyDuQoCDZBd9veBeTSo7yOWum%20JxISeU ba6QFJPpfZMkAS1oPcOW0b4LiU7I0h4jHx1k6sjtdh85l98%20 hpOSVVapMQyLLroksSAzg0tKBtGo9AJdTPnxSfko2ikSWu7FGW pBIwKWlDGrdmgEuJ/GOL/v0KNtUqpJIaforrv4wh3Gjv2P8xMlMnT6LeTPtaPlfDXA6ZESJ LHdjjTzuy8sY1LoNA%20adxCuu4kGrKomUpodwbctcxlcRt6Ek suzGGikFiYFcXm5LmzYDmHfCq9IbV1USKSU95BpzZkwvx3Uwln 9twKiDQXLJleVEK4ksd2ONtCCJwCvLsWvbhgFzj%20MZ%20yWz yhIpZ7Z1HhPGlM%201MqYDAX%20gRJa7sUZaQFLgFb4f3I62/edwzCNG/gQG5aHOYBJZdk2klIKkINxXDKFd2/7MOfaCmEzlnZ/KlaqrRG5%20EEZs6XNYpJn8NKcdTe234B2huCHAdCSy7MYa%20 VhXDqV9u/7MPvJceRe6iq56iezYhenHA4gpN97rc60Y/Z//B/vNnnxIKzFuJbLcjTWybT/o6iqGWbWj/6zDPIvKQHl1iHwgaiuRnWyYduwl0aV3IUozuTGvIy3sN%20P/Ic0wElnuxhpZnMHXVjO8gyLOp1XFWZVE2kzjqF%20U6qZDaeYN XDq1wH7jc96lGkkiy99YIy0gOfgaa%20w70r7/TA49iSRdeYmGDHCVEtndgWlHyu4yR5rJTdfOmNtv5Nm7VPnlaN pIZNmNNVIKkoP5aY09Hdv3Y%20bBJ0SkF6iqzootV51E2tB12m F8IktvjpSSeXM%20XSzs2fA0nBQhkWU7vvoba8qWqRUSKQtXms v7n2R3ZDem6%20wz%20CdmEOt5nAVDbejuuJjDv4TLL%20Qu98 HIRK6JLJNIZBckv7/O0n5NaWwzi9MvZZUrI53OLieRCnzvub60P00b2zDr1MsKFaovJ VJKxuN19De3YsTqw1x58By/kA9EPtvEwCbNGC2TyCwjVSLLSaQi7g/cWDaAZk1smHnSl0/ZZR8SvpRIWdwbGGDRgRGrDnFZFfdmBpk1w0lZ6dP3dHaZRMojJ PfDTZYPbE4Tmxmc8C1fsapCIqUZPNkwkDk7DlSIz1YW34EgYpV vZLpKZCmzm98PooWZDTNO%20BBfiVlFiZSS8WQjg1p2wGHlQS7 df47fq/dEPvsBu2bNcdpvIhKpGBgfbq3A1twMm%20nH8S7/ocJAlcgyiVTkNu/jLVbYmWNmM51jXrEVTpepk8i5p7z4kFYk6wBpXjC77VvSYeoZg uMUz88zRYmUHZvyPt5m1WALmspkxbNSZUddJdKqJUPW/8K71NLxvmLPCEs6/6UBU08GymXaqJXIchKp4P2Rn1cPwbKpDVMPvyBa9rgteSZkHqz mdHZHS4asfUh4StkY3Ea2ptOUk7yKyTa4RJbFORTLZl0UcWZUi rMKiezUaghrH7xFEaaUvFd7cWzTiSnHFQJslGsiy0ukInAi7qx hWKtmdJlySC7qpQXAKiWyWz%20GrLlHWHKhPAvSvBD2ObWl05R jvIxSPIpLN4mUB0NexB3WDm9N8y6TOfgsUv7IL/mK5P%20ok8gutB6ymntvkpFHJc0jZJ8T7awnc0wp6aISqaRYpy RSdkDOfsP52TY0aNyLJadPs2pEO5q0HcaiQ7fx9A8mNDSU0NDX hMdnUlBsKs%20JLC%20R8kHw5sIcujVsQq8l7oSk5GFWI4/4kZL95gJzuzWiSa8lXAlJUd2JVpVEprjPoHUDa6adfsab2E9Ev 37Bpe9tafqf3zBsr6xiVmKcG2sqSaTszS37zUXmdm%20EWa/FXA5OJrf0CxG%20OJ0tJeXqTNo2tGbqqSe8lsX95gWXVtjR7D//xrC9gcRmluh9Y01FiVTkNOyiCz0am9Fz0SWCk3JVp0m%20uCZS msLVWe1Yffk%20oar4BtPsv/7GULcAeXyy3VcfiZQzC7uES88mmPVcxKWgpArMKktkytXZtGtk zdQTjwmNkTHz4PLKITT/698Yuuel6tRszZ/OLleJVB7TpNlhXJ7fCzOzniy8EEhiTulpMsNcE1lRIhW5fXt5P r3NmtJzwQUCEnJUd5Wqk8i%20o5ey75YPr8OCeHRmIf3b2DD9u A%20xWYpYTVMiZWPN4e2VBfRp2pSe88/hX26sak9nWzXCrOtM9t70lo/38Y%20LGNDGhn%202msFRrxgyi418Y00liZRt%20zlv3VnUrxl Ne7hy1u8T2crLv9VKZIfGmNnMwO2Gl3IMixnYtivTjngRm1lsF ImUxxkui7M5zXq48qOf7MOnYiOXx1mFRHZs3BSbGXu47hVKWNB jzi4eRLuu0zjsEUVGMcY5nV1ZIuWbSThXFw%20gRbMeuJzxIU4 ZeJUS2dWGpl2ms/snT0LDgnhydgm27bsy9dALomRBa/mcyLJKZOkBIYfwq0sYYN6MHvNO4xOXVe5eCXUS2Rmzpl2Ytusn PEPDCHpyliV27ek69RAvIjPk7YVEKvnWNYmU7XifXx5mQvtvad alA3////4Pf2lkzYDBw3EYMYIR8pcjsw6%20ID7DhB/x89mfIxOtqNdiMBvuvuObhk1V16Ua7GHjlSqR8k1Cmo7/EWc61G/B4PV3CE9TfOPHlxIJBeHuLHPoSQ87JybNmMu8ubOZPms8vRp/Q%2081j4hIK6KFubkqbpnA6/cjQf6w8S8kUnbUSsf/6CQ6NmiB3bqfeZum/JaELyRSEffyEb3oYSuLe065uP9G79W/8TGtCHMLC1XcISEh1Q9borg7%20wuJlIcYwLHJnWjQwo51t8NI lX9TRhWVSAp4d3U5I8ZOxPmL%20H7lg7Kio59EKpgFHJuCdcMW 2K29RVhqGbOKEgkF767yvaOM2ShVTDNmjad3k7/Ta9VD3isrNKYgkbJjQHrgcaZ2boS57RpuvkkhT/YYSaNUIhWbhjQ9kBPTutDI3JbVN16TIl%20hbJVVXxM5esIoHM Y64zzeiSF9%20zB87gF1D2bRomK5HyzSaQE9NtaGxuy6rroSQr x6pWIju0xrrX4Erj3Y/rKX/eK/fTmqxEyjMmTSfo5Ay6NjFn0Mqf5NfQy/RdrUR2akPnXnbyMUwcP1qRszn7%20OVdqnzbMsjd2eVOZ6sOOL I4T82km5kFg1Ze45Xyw6c6ibRu25medg6MdZ7I%20NFD6dtnOH P2PSQ8NU9%20WrhGKpEKwGQEnWZW96ZYDFzB1eBE%20YfUKiWy 20A697TDfqwzMrZD%20/Vh%20Oy9PAhX7rf6SqRsm80I5vTsHjS1GMj37kEkllUZ1NxY04 V2nXtgaz8W54njGT20H32Hz2bv/bekKB%20XJCRSuZVKEjw4t/cgN4Jl10CWFvVVm7D8F1M8nV2S5MXFffu59jKZ7PIXtcgiliTi fWkfO7ZtYcP6Daxft451FV4b2HsrlNSc4j/8OZElSd5c3HeAa35JlcYhIcnnMgd27uGCVyz/MKhElpDkfYn9B67hl5RV4ZogOb4kH64c2MmeC7JP2QqJlGYGcf 3QEW4GJpddUF%20SyYfnP3HSbRubN29l9%20GLPAgI5OHpfZy8 Hybna9i7s6sR90FZ3J7EZCi/7k6aRdCNwxy5GUBSlvJ6NVncL65zcm9p3Bd44B/IwzP7OFUat64SWZKEz%20UDHLjmS2Jm5etvJCT5unNQllNP2eO nZGYjJSvoBoeP3CSgXC5KMj9w/tg%20fti8lV2HZfEF8PDMfk7df0OK7PqGalciS0iWbUcHruEre/BwpV1ckuSL%208FdcmbR6UqJlGYRfOMwR28GkFiJ2am921Qx3V fF9JoUZaWhJiWyJNmHKwcPctXnExlfDgy/q4fYtec8HlHpiq86k43r5hGO3vQnodK1i9X6xpqSZHzdD3Hwqg %20fMr7MbbLfVQ7v2iP/irrPyq/Sk2YFc%20voUW76J6iuz8wPu8tj719xP3WAHVu2sfvYVZ7LZKT cTTmmIJElyb64HzrIVe94Mip81amEZL9rHN7txvkXkXwulUhpF q9uHeXYjZdlfArCuHfiNDce3sf91MFy400hNk%20quunCOBJZQ rLvVQ4fuop3fLr8ETfyHUf5jyT5JT8d2Y3b%20edEpCkkS5r1i tvHjnHDL75smyp4y/0Tp7n%204D7upw%20yU5azo%2048C08hV/meqZ9Elih4HrqKV5y6OPfgdq5SnMcVcZZec1jw9j4nT1/nwX13Th/cyZZtuznq/ozwlFwVZ8NKZAkpftc4cugqF31S%20FxhG5G9Dyfjf/0oe9zO8exjqvysVsjPpzl%20w5e4ctcmPjhzlev37%20FhA7ty rYPn2bXMFHtDmdfeFZNLGfFU85KMu3hGT/6xzb48a5Zx9JVUmklKyQnzlx/Aa%20cZ%20Vx8cC3j44xZnr97nnfoZDO7eybfdR3JJTmn7JICI ZFldDX%20ZooSqTHoai7wR99YU80wMeyNNdVdq/7LGVYi9Y%20nuj3ofE1kdVdggOWqV4k0wIq06KImJVKLsDQuWi 2J1NiL4RYwBYk03Gg092QcidS8XkMtoZ9EGioKzf0YViI1r89Q S2gjkf9/e3aW2jAMRQG0S88eMk%20ryzzsoYV%20uMZQnD5ZqoPORyGO/WS9oxQu0lDv7BtHiOwTat0XIlsY//RRiCwLL0TGvIXImFu3Sojsioz7WojMuz5CZD7fj3xD/4wsRP5Y/NcnIbKsvBAZ8xYiY27dKiGyKzLuayEy7/oIkfl8hchEW8fZiYA95Y6ze4ASbjvOTsDrlDrO7oAUvnScXQbc cfZwzo6z/2BpJ/IPWJketROZCfaXYe1E/gLT87WdyB6gF2/biXwRaiSP2YnMuxB2IvP52olMtLUTmQjYU24nsgco4fZyufycT Cbff9frNWGk4UpXq9Xo5vRKd3YiX1HK98xms2l%20N6fTKd%20 LMo283W7fYv673a6Z5/F4zKQx/LBjDJH7/b6xPBwOwzddaMQiIXI6nTZYz%20ezUGtlXjObzZreHo9HmZcG3 jKfz99int3WFotFM%20/7/d69Pdrr9rxvt9to52liwwi0w%20/lchlm0IRR1ut1839zPp8TRlJK4P0F2uH3nQPbGFeiSIgcY%20P mRIAAAQIECBAgEBcQIuN2KgkQIECAAAEC1QoIkdUuvcYJECBAg AABAnEBITJup5IAAQIECBAgUK2AEFnt0mucAAECBAgQIBAXECL jdioJECBAgAABAtUKCJHVLr3GCRAgQIAAAQJxASEybqeSAAECB AgQIFCtgBBZ7dJrnAABAgQIECAQFxAi43YqCRAgQIAAAQLVCgi R1S69xgkQIECAAAECcQEhMm6nkgABAgQIECBQrYAQWe3Sa5wAA QIECBAgEBcQIuN2KgkQIECAAAEC1Qp8AR6GW0VUfFyeAAAAAEl FTkSuQmCC

Ygorcs
08-07-20, 07:11
Shahmiri: To be honest, 2 of the 3 components in Fatyanovo are southern in origin: CHG and Levantive. And we know that R1a1 is not original in WHG. R1a1 is obviously seeping through into the north along with these southern components, getting fixated for short periods but eventually being replaced by new waves. z93 in particular is an ephemeral phenomenon in the North and it tends to be a marker for turkic, scythic, or jewish origins; that is, for foreign origin. it is an odd dynamic but there are no real indications for the in situ genesis of R1a1 in the Northern Steppe. Much of it seems derived from elsewhere. Northern MtDNA U4, U5, and U2 are also very much derivative of the more prolific N and R lines in the South. The european steppe peoples are also very much Siberian in their basic genetics as well as culture and ethos similar to the Uralics, Mongols, Hunnics, and others who have moved freely through that territory for ages.

Your entire post is full of anachronism, a chronology that is totally upside down (R1a and Z93 in particular far predate Scythian, Jewish or Turkic presence in Europe or actually even Scythian, Jewish and Turkic cultures themselves, they are essentially LBA/IA phenomena). Besides, what Levantine origin in Fatyanovo and other parts of Northern Europe? That just doesn't exist. And where is R1a anywhere in the ancient DNA samples from West/Southwest Asia from any time before the MLBA? Nowhere at least so far.

Shahmiri
08-07-20, 09:14
Shahmiri: To be honest, 2 of the 3 components in Fatyanovo are southern in origin: CHG and Levantive. And we know that R1a1 is not original in WHG. R1a1 is obviously seeping through into the north along with these southern components, getting fixated for short periods but eventually being replaced by new waves. z93 in particular is an ephemeral phenomenon in the North and it tends to be a marker for turkic, scythic, or jewish origins; that is, for foreign origin. it is an odd dynamic but there are no real indications for the in situ genesis of R1a1 in the Northern Steppe. Much of it seems derived from elsewhere. Northern MtDNA U4, U5, and U2 are also very much derivative of the more prolific N and R lines in the South. The european steppe peoples are also very much Siberian in their basic genetics as well as culture and ethos similar to the Uralics, Mongols, Hunnics, and others who have moved freely through that territory for ages.

Well said, the steppe was the land of nomads, such as Turkic, Mongolic, Uralic and Hunnic people, not Hittites, Persians, Greeks, Romans, Indians and other major Indo-European people, of course there were some IE people like Scythians who migrated there and adopted a nomadic lifestyle, but the absolute majority of Indo-Europeans had an agricultural lifestyle. We see nothing in Greek, Indian and other Indo-European cultures which show they originally wandered in the steppe, the fact is that Indo-Europeans didn't migrate like nomads, but they conquered other lands and imposed their own culture on them. The main reason which could cause the migration of IE farmers was drought and famine which happened in the West Asia, especially Iran, several times.

Shahmiri
08-07-20, 12:10
Underhill 2014 and Grugni 2012 again? Do you have any other genetic evidence, preferably more updated and with more specific information on haplogroups? You've been here for many months repeating ad nauseam Underhill 2014 and Grugni 2012. Is that all?

Also, I'm afraid you're still misinterpreting what the results of Grugni et al. regarding R1a in Iran really mean. The authors' phrasing was really poor and misleading, indeed. As far as I can see, they tested the samples for R1a-M458 and R1a-M434. If not present those clades, they assigned the sample to the upstream clade R1a-M198. They didn't get more specific than that: M434, M458 or "the rest" of M198, with all its many clades besides M434 and M458. There is nothing basal (M198*) about that, it's simply residual (M198xM458,M434). That is made clear by their picture about the haplogroups they tested, in which they distinguish only M198 generically, M458 or M434 more specifically, and nothing else:

https://www.eupedia.com/forum/image/png;base64,iVBORw0KGgoAAAANSUhEUgAAApEAAAFcCAYAAAC QteU8AAAgAElEQVR4Aeydd1RUd97//Wf3d559suum7LPZjdGosSsgFjqiIooFVBB7izHGbtSYxF6ixpZ oLFETe wVFRuCgg1EBUR67723Gaa8f4c2DohS7jAF3pxzz9z2 ZbX53svr7n3zkwL8I8ESIAESIAESIAESIAE6kmgRT335 4kQAIkQAIkQAIkQAIkAEokBwEJkAAJkAAJkAAJkEC9CVAi642M ASRAAiRAAiRAAiRAApRIjgESIAESIAESIAESIIF6E6BE1hsZA0 iABEiABEiABEiABCiRHAMkQAIkQAIkQAIkQAL1JkCJrDcyBpAA CZAACZAACZAACVAiOQZIgARIgARIgARIgATqTYASWW9kDCABEi ABEiABEiABEqBEcgyQAAmQAAmQAAmQAAnUmwAlst7IGEACJEAC JEACJEACJNDC1NQU6pzi4uJInQRIgARIgARIgARIQMcJtGjRog XUOYWGhuo4MjafBEiABEiABEiABEiAEskxQAIkQAIkQAIkQAIk UG8CLR49eoTGnj799FPF1U5eiax3jhhAAiRAAiRAAiRAAlpHQC 0frOnYsSMlUutSzwaRAAmQAAmQAAmQQMMJUCIbzo6RJEACJEAC JEACJNBsCVAim23q2XESIAESIAESIAESaDgBSmTD2TGSBEiABE iABEiABJotAUpks009O04CJEACJEACJEACDSdAiWw4O0aSAAmQ AAmQAAmQQLMlQIlstqlnx0mABEiABEiABEig4QQokQ1nx0gSIA ESIAESIAESaLYEKJHNNvXsOAmQAAmQAAmQAAk0nAAlsuHsGEkC JEACJEACJEACzZYAJbLZpp4dJwESIAESIAESIIGGE9CgRMqQEe iO65fO45JnOHKLJW/0QpL4HLevXsIljwBEh0UgMiIc4eFVp4jIJOSIJZBViS5GjPct3 PNPRL6o6pYqu3GBBEiABEiABEiABEigQQQ0KJEleL5rHMz1O6L jwJW4HZMFkVy5DyUI G0KLHt2ht7U7zF/UD Y9zKEoWHVqZf5ApyOSEehUmxx0FHMsTHCiLV3EZslhtIm5Qo4T wIkQAIkQAIkQAIk0EACGpRIMR6vscRnn7yPv/ jD364FY0ssVIvSgKxe7QeWrX8C1oOXYszvx/DqePHcezYsbLp6K65sPrsX hg/zM8E3JRUhlaHIzjX5vhs5b/g25znRGRLqJEVrLhKwmQAAmQAAmQAAmoiIDGJbJtz/6w Pw/GLD2LmKyX1ukJGgfHI0Ho1 3f Dfo3YiKCoVhYWF5VN NK6ttEWP3hPwi1sYssSyClEUIeTkXNjYDINF2/fRayElUkXjhMWQAAmQAAmQAAmQQBUCGpfIdiazsHKyAToM/RH3YrMrrihKEPKbE4ydVmJB///iM4dfEZGUV9FwOfJ9dmGsoQFG/ SK8Cyx4nlIUdgpzLMZjK/3HcB887Yw/eYqr0RWSTcXSIAESIAESIAESEA1BDQvkaaLcOrw1zDpZoefPOO QU3pfWhKGg NM4LT9CjbafY72jkoSKY3FuTkm6Np/MS4GpKJYWgFCHI4zC21gPfM3PAjzxKbBHWBOiVTNKGEpJEACJE ACJEACJFCNgBZI5De4 uIcvrHogdHbHyE VwJJ B YYDIG2z19sHtcpyoSKX65Bw7du2H0Dk/E5JZU3MYuQcS5RbAZ AV2e0Qip8AX22wpkdVyzUUSIAESIAESIAESUBkBrZDIaxHhuLb UHHpjfoFXQjZCD0 CyZhteBAdisOTOitJZDF8tg5FJ/1JOPg8EQUVVyFLoi5gsc0ATN15DxHZYshK/CiRKhsiLIgESIAESIAESIAE3iSgHRIZmY7kG4thpj8Ou70fYc8 kEzhs8URsZjyOT1aSSIkfdgzvBP0ph CXXFDxLKQU0cenQf Tf6ONngks w/EwAFG6PDR3/DPNvowt18Ll9gsFPN7ft7MPteQAAmQAAmQAAmQQAMJaIlEZqA4/ToWmvTExLXLYKtvj588YpAtSq4ikdLow5jQtRNG//IcCbmVD0PKkPbkT zYuAYrV6zEypUrsXL517Dp8CHamI7DvNUn8SwtH68/991AUgwjARIgARIgARIgARJQENAaiRTJ0nBlrhH0urXFJ1brcC 8mGyWylCoSWeS6FEafWeI712hkKlmhpDAb6WmpSElJKZ8S3LFm YDsYfX0c3iGpKJJUfgWQot cIQESIAESIAESIAESEEBAeyRSLkPKxdno3epjmK24i isEsirSGQOEo5OROfPHfGrfxLy3vVrhnwmUsCQYCgJkAAJkAAJ kAAJ1E5AgxIpR26MH7x9I5BRXFL2fKMsOwovvJ7gZXwexNLShx jFSAl Cu/ABBSJJShOCsTTp0FIKhSj8mZ2jV2UFyDupTd8IzJQVPIu26wxm itJgARIgARIgARIgARqIaBBiaylZdxMAiRAAiRAAiRAAiSgtQQ okVqbGjaMBEiABEiABEiABLSXACVSe3PDlpEACZAACZAACZCA1 hJoYWVlhcae/ud//gctWrQom/r27dvo9TV2f3S9/JiYGK0dkGwYCZAACZAACZCAbhBoUSl3fC2X3ObAISgoSDdGJ1t JAiRAAiRAAiSgtQQokRVXSJuDPFb2kRKptccjG0YCJEACJEACO kOghbu7Oxp7atWqleJ29vHjxxu9vsbujy6W37p1a0UOKJE6c3y yoSRAAiRAAiSgtQT4wRqtTY1qG9alSxdKpGqRsjQSIAESIAESa NYEKJHNJP2UyGaSaHaTBEiABEiABNREgBKpJtCaroYSqekMsH4 SIAESIAESaFoEKJFNK59v7Q0l8q1ouIEESIAESIAESKABBCiRD YCmiyGUSF3MGttMAiRAAiRAAtpLgBKpvblRacsokSrFycJIgAR IgARIoNkToEQ2kyFAiWwmiWY3SYAESIAESEBNBCiRagKt6Wook ZrOAOsnARIgARIggaZFgBLZtPL51t5QIt KhhtIgARIgARIgAQaQIAS2QBouhhCidTFrLHNJEACJEACJKC9B CiR2psblbaMEqlSnCyMBEiABEiABJo9AUpkMxkClMhmkmh2kwR IgARIgATUREDlEikJu4GD5x4jIbcYsopOdOzYUfG7zaGhoWrqG qtRJvA2iZRlBMPz5lVccn6IiNwiSJSDSuclSfBzc4Gz80Pk5hW VrkB2tC88b7vg u0HCEzMg1gqV4qSoTDxJR663sDN 76IzRZBUrFZXpSBhNgoREZGICJCeYpEVFIORJLKEaNUHGdJgAR IgARIgAS0koDqJFKWjoigOKTeWQ37 cfg5DoPgCiCRyUCI1n/u3SWSJ7x5MHtAbXbvaYPXtaGSKlIUQkAT ji t 6K74ZeIiAiEz5HvMWGwFfoPGgxrCxOY2UzBxqvByCiSlglm4r1 dmDvKGgOsB8LC1BTWE9fjclAGCqWA6MkuTLcbABMjIxhVmUww4 JszCE8rQNXaNc NLSABEiABEiABEqiZgMokUp7tiV/nToSTjQHadDOHzYChmHPAG2l5JZTImtmrde3bJFL8ZB36t/sE77/3D/T94QaiMsVK7ZIg LexMGz9T/yl5VA8O7kck02NMHzpb7h09wEe3T2N9U5G0B/0PS6HZaAw3R0/jjKB1dQtOHnjHu5d2o6pFj1h891FhKQXoSTBG85njuHQH3/gj7LpILZ/3Q f/etzDN96D3E5ynUrNYOzJEACJEACJEACWkdAZRIJcToifM5h VADtG3dBaPW/ol7welltyh5JVLzeX nRH7eE/1M2 O/1mvhGpUFhcpJQnBgvBmGWHZFy4/tcGG CXoYfYE/vGORX3qPWlaEROdFMO1ojRW3IxB2aQnMug/DqpvBSBfJIBdn4OmWkehuNBd/BqWgQCJGUWEBCgrKp7xoF6wdYYA 47bhVlAGRFVui2ueGVtAAiRAAiRAAiTwdgKqk0jIkO66Dg6OS7 B12WhYT92FB/E5KJGDVyLfzl9tW94tkaaY cNEGHQajh/dopFVUt4sSejvmGjuhB/m9kertqPhdfMqHjwJRlqhuOJ5VzlybyyBcbvOFOCG6ts0FH80W 4EpqG4or70gX3VsCykzVW3IlEhsJOAcjz8XzfJPTtORI/3ghGhojPQ6ptMLAiEiABEiABElABARVKpByihMe44xmO5Ggv3H Z7hZT8ctnglUgVZEpgEe WSDMsPPE7ZpnqYeRPHojJLrVICcIPTYK50xZc NEenTo4ICgkHnK50lOLhUE4PtMYHU0X4UJQNM7PN0Tb4T/CKzYbpU9Ilv5JgnZhZOc mHUyCCmFr2NlcZewqF93WC08A9/kQvAiZAUwvpAACZAACZCAjhBQoUSWXl0qgbhEBrlcArFYikrfo ERqfjTUKpFXfHB6UT/oO2zHw9gcSCSRODLFHGO2uMNr90R0q5BIRU9EsbizdTKMu1vg6 4OPEJuXjnOzeqD9qO14EZ j GS NPIAxnbRx7RDr5BUUCmRYrzaPx4GPUZii3sksksvV/OPBEiABEiABEhApwioViLf0nVK5FvAqHF1rRLpHIrQq0th2dMJ vzyOR1bYcUwzd8RP7hEIPjy1ikTK88NwbdNU9OtpjsmbL8MvqR ASWQGuzNNHO/steB6nJJFhDYuSdmHA1EcqVEip7jZ/tuMJiwD0/j8xRXLdWIg1WRAAmQAAmQAAkIJECJFAhQV8Jrl8hwpCa6YLG5I cbvfoKH 6bC3GEz3CLTEX9imkIi5dl OLXcCWa9B2Lm9it4Hp PElnplUQRPFdZoMOglXCPykTFY5Uo8dkImw7m OZKGNIqvj5I8nIXRnU1wMT9z5CYX3njW1dIsp0kQAIkQAIkQAK lBCiRzWQc1EUi04rScG2hKXpNWofvhvWE/SY3RGYWI XPCon098CV1Y4w7WOLhftu4WVyIUoUn4eRIv7YVOjrT8L F4nIL1svQ/yJ6dDvNha7n8Ujr8wXZYg9NhV6XUZiu1cccuiQzWQEspskQAIk QAJNjQAlsqll9C39qZNEimRIvTwPJgZ6aN qH1a7RiJTLKuQyNG4/dME2HT5HGZT12L/hdtwu 8BDw8PeHh6IzStEPmhxzC9rwGGLDmGJ3HZyAi9jnV23dFj7G48 ic t DWcIrh9b4b2lktxIzwdYj4O ZaMcTUJkAAJkAAJaDcBSqR250dlraubRMohS76AOX1b4z8m3 NWRCbE8kqJHIIVZp/gv /9DR 26YRuPfSgp1cx9bTF6htRyMhLhdeBuRhs1AcmVgNhZayHbiYT8 dONEGQWV1xylCXi NTu6OjwC57H5yo gKOyjrIgEiABEiABEiABtRCgRKoFs YreZtEynIi4fPAGyFphRCX3oKWZiL8qSc8nkcjp1hS9jOE4qQA PHrwDEEP3XHP9TZu36423fHEq6SCst/QFmdG4YXbBRza8wt 2XcCVx8GITm/5PVX MiLkPDyER6 jEO 6I1f6tY8KLaABEiABEiABEigTgQokXXCpPs7vU0iG6VnUhHyc7 KQnVdU8aGbRqmFhZIACZAACZAACWiQACVSg/DVWbVaJVKdHWNdJEACJEACJEACGiFAidQIdvVXSolUP3PWSAIk QAIkQAJNmQAlsilnV6lvyhJpZmaGwYMHcyIDjoFGGAMRERFKRx 5nSYAESKDpEqBENt3cVumZskS2aNECnMiAY6BxxoCvr2 VY48LJEACJNBUCVAim2pmq/WLEtk4wkARI9fqY4ASWe3kw0USIIEmS0AtEunp6YmbN2 WTQUFBU0WpjZ3TFkiDx48qMhHZV74Wj4 yYEcGjIG2rVrp7i6T4nU5jMh20YCJKBKAmqRSFU2mGU1jICyRA YFBTWsEEaRAAnUSMDAwIASWSMZriQBEmjKBCiRTTm7Sn2jRCrB 4CwJqJgAJVLFQFkcCZCAThCgROpEmoQ3khIpnCFLIIG3EaBEvo 0M15MACTRlApTIppxdpb5RIpVgcJYEVEyAEqlioCyOBEhAJwhQ InUiTcIbSYkUzpAlkMDbCFAi30aG60mABJoyAUpkU86uUt8okU owOEsCKiZAiVQxUBZHAiSgEwQokTqRJuGNpEQKZ8gSSOBtBCiR byPD9SRAAk2ZACWysbIry0TIg9u47nwdjyPzUCypXpEEyf7uuH mtdHuuYrso/gUevkxAvkhaJUCSHQO/h664efMuHgUlIV8shbzKHlUXiuOew/3BKyTliyEDQImsyodLJKBKAjVKpCwLYY9d4eJ8HY/Cs1FYUr1GKVICPHD7 rVq28VI9HuMgPgcFFWcN RFmUiMj0FUVFQNUzSSc0SQyICSrGj4PnDF7buPEJiYC5H0XWeJ 6u3hMgmQAAnUjwAlsn686r53iS/2TrWGUQ89DF3nipgsUVXpkwThj69sYKzfB7OOhyK1oPRkL8eZZ eMxcsUVRKYXKfbPeHYcK6YMg7X1ENjaWMGi3zDM2OKCkMwiVFX NiuYVh LUYnv0c/gRd2OyIJZTIuueOO5JAvUnUKNElvjj4ExbmOrpwXaVC8LSihXH dFkNkhAcmzcc5gZ98OWhl0jILX27J0dh2HksH uA5eeDkFx2XgDEPr9hjpMtLM3NYV59srTBktNBCH54Guu sMMgaxsMtu6P/sOm48dLAUgteOMdbP07yAgSIAESqIEAJbIGKCpZJX6MtVZt8ck/30NL4xW4FZ0JsVLBkuDfMLbnp2j5l5YYttMfiXlSZL 6hIHdP0XrCUcQlFyg Ifz2zRrGA1bjD3nbsH9/k0cX 2AvgaDscI5ApnF1a80iBB2ZhEGtH8ff s2B5fD01C6C69EKsHnLAmomECNEin2xqYhndH6/ffQsu8yOIeUH4uVVUtC/8AUo7Z4/68tMWSrN6KzJcgJcsbmqWZo 0FrjN3/AnF55ce3NMELl08exv7ffsNvldO n/CVVXv8u/0QbHC ip /GAAT23nYcfI67t69gG3T qGP7Q 4FJyKouqnicpG8JUESIAEBBCgRAqA987QMolsDwNLE7T7ZBDW3 41BlsIiJQg9OB6mNhbo8o9/Y ROH9w/uRmzhluhf4e/o91kZYmUwLG3Lab/7o3YfAnkkKEo/hIWGHeA9co7iMpUFAqIwiEKO4ElwwbD1vQzvN9rAa5QIt ZJm4kAVUQeLtEdkEvCyO0azUIq11CkS6qtDkpwg5PhZWtBbr88 z w3/YArie3Yd7IARg4zAIdP2qPCUoSCakYRQX5yM vnHIRc2sjHPv0xZgfneH78io2TB6HxYceIyq7BDK5GCkXF8Cky 3CsuxuOjDdupaui1yyDBEiguROgRDbWCKiQSNMvv8cE/U4YsekeYrIrzuSSMPwx0QyO38 B1X8/g8Ouhziz5Tus2nEMK2zaovt0ZYmUwfu N16lFkBcerer9IZX7k0sNm6H/j 4Iiqz8r DCJEXluLUV8YY8uVO7JlrjramiyiRjZVflksCSgTeLpFdYT59C cYZdoPd lsISxeX32GQRuDo9P5wWjYL/dt8jtHb3HBy6wqs3XEY169thENXfUw98PpKpFJVgLwA8oIX H2GOXrbrcZl/1QUFqQi4uUrRKUXlp8npFl4vnMs9HqMxc4n0cip8bmXKqVygQR IgATqTYASWW9kdQyokEizhSdwcKYJ9EZthWdsDkqfTpJEHMYks zH46cKPsOvwORx3PcfLgDDEpefjwHg96FWRyFJrlCtubQOFCP5 zFkw6mmLh SCkFZWbpTjqEpYNt4Fx74nY5RYEj01D0MmcElnHbHE3EhBE4F0 SaTHvEPZ9ZYleozbCNTyj7LEWadRxzBgwFhtPrceo7p3hsO0Rn r8MR1x6Hopij2F6T0NMe4tEyhKuIuHCTNgYWGHOMW/El92hqGy GMHXdmHNHAdYGRrDYfU5 KYUlJ13KvfgKwmQAAmoigAlUlUkq5dTKZGLruDpqYWw0HfEz4/ikCuRIPLoFJg5boG7968Y36VUIkufiSyXwcMT9d USEXZIsTd3YFppj1g/tV PIzNRUlpWEk0rnw/HIOm7sC4Pc8QmpUP3 1DKZEKbpwhgcYl8G6JPIuHfy6BdZ8x2OIegcwSCaL/nIkBTptw88GvmNqzCxy2lT4TWX4OkCUcxxdvlUgxgg9Pw56h/4WB3QbcDMmA4g55aRflOXhyZA0WTRoE/TatoDdyLa4EpqHivWbjQmDpJEACzY4AJbKxUq6QSGeEhVzBYou eGLvLCwnZ4Tgx3RwOm 8hMvgwpnSto0TKCxDusgVf9O8F84k/4sKLRBSUGyRirv6AEdaTsPVWMLzTSyCSlsCfEtlYmWW5JPAGgX dL5DkEBDrje u GLvdA1EZ4Tg1awCcNt5CUOBRfFkfiRT5YY TASw/ hRjdz5AVE7pc9LKfyXITohEWOALeJ78FsN69sKYLe5Vn51W3p3 zJEACJCCAACVSALx3hipJZERqAq4tMoPhhL3wfrwf08xHY5N7F DLij9dNIuXZ8D 9CuMs mDAjC246BOHvBJZ T8PWSxOfdkLn/73c/QZaIuhdvawsx B/t0/xt8//BxGg8Zh8 04fNy2M1q0aFE2BQUFvbPp3EgCJFA/ArVJZGBiPG4sGwCjCTvh4bkfXw0cgw03Q5ASdwoz6yGRksB9GG tgiA9bOWH345jXzzpKCpGZlIocUYnia79ked7YYtcVepP340Vc XjXZrF//uDcJkAAJ1ESAElkTFVWsU5bI9CKkOs HSe8p2LB8BHrabcTdqCwUJ5 ok0RGXl0HJ7O GDJ/N1z8kiquQFY0UpaKh0c2Y/V3S7Fk6VIsLZuWYPqA9vjg074YPfM7HPFKwSftKZGqSCvLIIGa CNQqkUmFSLu BFbGk7Fm2Qj0HbUeN4LTUJRyuh4SKUP8yZno3d0eH9rsgUdkpu JZR7HfEXwzaTZ dotGRuX9bZEPtgzvip7T/oBvfD4lsqbEcR0JkIAgApRIQfjeEVxFIkWQplzEHKOeMOjwKSx XuSIyUwxZSl0kUobvhxvhc9MpWHPgIu7c88SDBw/w4MFD ISlo0gsRn5GMpIS4hEfXzlFw3X1QLTvOxOHS3 1pkCCjp278ErkO9LFTSQghEDtElkEaeoVLLLsg54dPoXF8usIT hVBmlofiSzG/VUD0MlyEfSWeSEo5fWXl8viL2GhZXcYT9oGl8AMFOQn4unxbzC way9M3vcYsbn8wnEh WUsCZBAzQQokTVzEb62mkTKpUk493UffPqxMb67FYFMsbxuEim LgXGX9vjbv9qhm15PGBoaVkx9MGLdLURnVvslnLKW85lI4QlkC SRQdwJ1kUi5LBmXFpij3X NsNg5CKnFcsjqI5GyJJz80hBdRm F7YEERGWVfxCnrJWSDPidXg5HSyOY9h CobYDYNLLCEPn74N7WBaK RU/dU8m9yQBEqgzAUpknVHVc0dZFkIfu PRqxQUlH3BoxQZwY/gdtcbEdnFkMgBuSgBvvfd8Szq9W9nx73wgIdf/Ovfzpbn4f49N1y/dg3XqkzX4eaX Hq/Ks2TITfSG/ceBSKlgL dXQUNF0igEQjUKJGybIR738ejgCTkiUotTorM0Cdwd/NCeGYhSko/ESNOhL/nPTyLLP1t7fKPyMiL4 Hn6Qm/2Ne/nV3WZHkR4nw9cP95FHzixYrf1a7sjiQ3Di89nXFs7w5s3fYrDl 9wxdOIDBSVfQCvcikgAJkIDqCFAiVcdSq0vizx5qdXrYOB0nUK NEaqJPshIU5mYhMzMXhSVSPgepiRywThJoRgQokc0k2ZTIZpJo dlMjBLRGIjXSe1ZKAiTQXAlQIptJ5imRzSTR7KZGCFAiNYKdlZ IACWiYACVSwwlQV/WUSHWRZj3NkQAlsjlmnX0mARKgRDaTMUCJbCaJZjc1QoASqRHs rJQESEDDBCiRGk6AuqqnRKqLNOtpjgQokc0x6 wzCZAAJbKZjAFKZDNJNLupEQKUSI1gZ6UkQAIaJkCJ1HAC1FU9 JVJdpFlPcyRAiWyOWWefSYAEKJECx8Ds2bNhZ2en9dN7773Hnz 0UmGuGq4fAggULtP54qn7Mt2zZUnF89evXT faX70/XNbsOT0sLEw9BxtrIQGBBNQikaWiZW9vXzYlJiYKbLJ2hXfu3F nxz6NFixY6MR8UFKRdENkaElAioK vrxPHka4c72ynbpyXlfP09OlTpSOCsySgvQTUIpEdO3ZU/FMIDQ3VXhoNaBklsgHQGEIC7yBAidQ96VEWIM4Lzx8l8h0nCG7 SKgKUSIHpUJbIvXv34sqVK1o5tWrVSiHyvBIpMOkMb1QC9 7d08pj6F3Hdtu2bRXH1y //KJz7X9X37it8c/pHTp0UIyf7du3Izs7u1GPMRZOAqoiQIkUSFJZIoODgwWW1njh/GBN47FlySTAD9ZwDAgh0KdPH4VE8iqkEJKMVTcBSqRA4pRIgQA ZTgJNgAAlsgkkUYNdoERqED6rFkSAEikIH0CJFAiQ4STQBAhQI ptAEjXYBUqkBuGzakEEKJGC8FEiBeJjOAk0CQKUyCaRRo11ghK pMfSsWCABSqRAgLwSKRAgw0mgCRCgRDaBJGqwC5RIDcJn1YIIU CIF4eOVSIH4GE4CTYIAJbJJpFFjnaBEagw9KxZIgBIpECCvRAo EyHASaAIEKJFNIIka7AIlUoPwWbUgApRIQfh4JVIgPoaTQJMgQ IlsEmnUWCcokRpDz4oFEqBECgTIK5ECATKcBJoAAUpkE0iiBrt AidQgfFYtiAAlUhA XokUiI/hJNAkCFAim0QaNdYJSqTG0LNigQQokQIB8kqkQIAMJ4EmQIAS2 QSSqMEuUCI1CJ9VCyJAiRSEj1ciBeJjuLYSkGQiwusGzvyxBzt 37saBE854EJKKwhJZeYvleYjyccdtl6u4erV8unbtGlxu3oHH0 xAk54mQHekD9z1RpmgAACAASURBVDt38Tw2F8WS6h2VISPkMdz uPEJweiHE8qrbxYkv4RWYgNwqgRLkpyciLiYa0dGVUwzi0/NRIq0oQJKNGL9HcL97D17BycgTS1G1aAly417B654r7rg/QXBSHsSVsVWbUK8lSmS9cHHnagQokdWAcFFnCFAiBaaKVyIFAm S49hEojoDL1jkYPWgAbIbaY9Roe9gOsIDlkMlYe8EfqQUSQBqO k4vs0d/UGOYWlrC0tES/fpawMDOGsVl/2H/9M67c2IcFo20wculp CcXQKrUU1nGQ yaORwjZh/Ao9gclCiZnrwoHJdWTcDYVZcQmlL4WgIlwTj5/RSMGjwQAwdWToMwbuMtRKUXQ5bzEhc2zoLD0CEYOmwIbAaPxqy t1xCUXlhetywLfmd/xNeOQ2E7fASGDhqAQaO xvbrwUgvVG6dUkPrOEuJrCMo7lYjAUpkjVi4UgcIUCIFJokSKR Agw7WMgAzpruth39cMY1cdxMU7D/D48UPcv3kMK0b2hp71d7gQnIaiklfYNaoz2vefjd3HLuC6iwtc XFxw/do5HFg1Bn069MCIFQfx6ywrdOkyEN ee4XUwsqrmLl49ts0mHTrh7mHHyMur0QhirLcYFzfNgMW7T5Am 3EH4Refr9gmz7yM UYGsJ76PdZv3YmdO0unX3HoZiAy8vMRdHwurE2HYPbWo7h0wwU nN06ERZ8RWH01DEnFchT5H8bXA81gO3crjl6 idtXDmGFgwl6D1uByyFpKFIS2fomhRJZX2LcX5kAJVKZBud1iQ AlUmC2KJECATJcywiU4MX24ejSewoOPI1DXuUFOlkR4i6vwCib 6dj5IBbZxQFlEtll7G74xucqRA QojDJDWsGf462dltx1/UgFlh1Qvehq3EtNAPFMjkKAo5htmUPWMw6gAcxuYqrkOLIW9i1 yBGDrIfCrMOHaD xqkSWvNiGET2G4HtnP0Rl5CI3t3zKLyqBTJoC140TMWbR73gUl Y0SmRyipLOY07czhv94Hz4ZxQg4OBG9jCdjt0cEckpvy0sLEXd pESy62GDFjTCkVb nXo/MUCLrAYu7vkGAEvkGEq7QEQKUSIGJokQKBMhwLSMgRcShSdDvb IqpW8/hSUwORBXPDMqyo Dr/QLhaYUQl7xNIgF5rifWDPocbe13wCc6Fv7Hv4ZZJ304bnVHdEo gzi22hoHZDOy9H4kcccXVSQD5jw5gxcqfcPDKZWwY1Rl6U5UlU obUc7PR13gGdl69gTt3buL2fV/EZBVDUnoFUV6ElNAX8AtPRUFZmVJkvdgFp 7dMHaXNwJzSpAR gi33X2RmFtccWtdjrw738Oy4wAscwlBqrjhqaBENpwdIwFKJEe BrhKgRArMHCVSIECGaxkBOYqjb2LzRHPo9egFM5tRmDznO2zcf QI3fKKRLZKUX3WUVtzO7jcT2/Yfx7nz53H /FmcPn4APy2yg0E7fYzb5YnYnBJIMp5h/7Q 6GzyJX7a/BX69zTD1F/dEJ4txmuFBErSoxAanYrcolgcnaaPntOUJbIETzfbolP7rjCxH g4HB3sMHjAQI2ZsxOWXaSh9TLPyTxxyA3s3LMR46z4wHrUSZ1 kIK9iu1ymdM 6KAznFlqhq8kc/OmXhALlxlQWVsdXSmQdQXG3GglQImvEwpU6QIASKTBJlEiBABm ufQRkBUgMuI8L 9ZhwWR7WJsaoluXbjA0H4YZm53xKr0QEkm5RH7yaSf0MbGAlaU p hj0QLfufdF/xEQs2nYOXjG5EJXeDpeLkfLoZ4zr1RVd232CHuN34E5oFkRvkz ZZAo5Vl0h5Dtw3j4PN8C w7sB53HB1xbWjqzHGpCcGLjwB3 R8xdXF3MeHsHL eAzo0Rqf9nTExushiC UVRFWiBLgsXc2 vc0x/SddxGeJaq6vZ5ZoUTWExh3r0KAElkFBxd0iAAlUmCyKJECATJc SwnIIM5NRWyoP5563sXVk7/ih3Em6Ny1P5acDUJq3suyZyI/7z8He45fxI0bV3F653wM6twaXW2X4/zLFBQqfXWOXBSPS4vM0aaVBZZcfonU4sqHLWvofo0SKUZa2HN4 Pw9DSr4YpUXLihJxZ6UNOht8gUP icgvu8gohzgzFqGBfvC ewSLBhugz/ifsetZJrJLyuuSF0bBdddc2BqZY yqP/EkJg9Kd9VraFDtqyiRtTPiHm8nQIl8Oxtu0W4ClEiB aFECgTIcO0iIAnGpc3fYdMpPyTnvr5HLBPnIsn/EGb0ao9 y64jIvl5tQ/WyFGSE437v0yEUXcjjN1yB5FZIqUP3JTAd/twdO4yDntexCFX6a7yGwBqkkgAMkkRiktkeH1HWobkP7 AfvsR2PQkHAnpyUjLFUNSeYVTlosnG4ehU4 pGH80Ggn5cshzA3Fp03RYGw/AlPUn8TAyW/HM5xvtqMcKSmQ9YHHXNwhQIt9AwhU6QoASKTBRlEiBABmuXQQk ofh9kiH0hq6BS0hGlVvOstRLmGfUAQN uI3IlBfVJLK0G3KIkx9gu5M 2hs4Ycf9GGQrPvFcAv f7dC523js9Y1HXn0lssQffy6fhW/3P0JcVuUnYER4uXMUuvaYhP3eLtizZBoW7PZArNJ2n5 GorPBNEw8EY2EzGjc2jINA01sMGvbRTyNzVXJF42X9pwSqV3DW NdaQ4nUtYyxvZUEKJGVJBr4SolsIDiGaScBeRFCzy7CAD0DDJy 4DD8fu4I79 7D1fk4ts0fAr3uw7D2eigyCspvZ7/xFT/yYiTcWYvhXdqj9/QD8ErIQ/n1TIESKY3Gqa M0dXsC y6E4LMwnwk pzA4kHd0HvKfjyJfoXTc83QzXQafrldvj3p2Uksse4Kw0n7cPB lJoKursFIg04wHr8cey 4wuPhYzx /BiPnzxHeOmv5lRewWxAZiiRDYDGEAUBSqQCBWd0jAAlUmDCKJE CATJc6whIskLh vtyTLUbCAtTE5iYmMLMoh8GDJ2IZb/dQVB6keKDNW9IZOn1yIIIXFo6AB06WGDBST kFJQ /yhQIlGCFK8/sMjODCaWg2E/eiSGWPaB0dB52OsejmyRCGnPjmPZKAuY9BtStt3Wsi Mbedg990wxBdE4/RsE7Ru R7 r4MeDPsaw9i4YjIdhXU3IpBe/K7Lo 9OEyXy3Xy49d0EKJHv5sOt2kuAEikwN5RIgQAZroUE5BDnxCPo mSfuuDjj8qVLuHztJty9AhCXXVz zKE8F GPb O2VwSyiyo saLoiQw5EU9w 5oLHoSmo7DsNw1lyAl7hFu3vRGRXVRxdVIRUHVGXoQYH1fc9Yl CTtHr5zLl4kxE NzBmQM/Y/OPG7H9t1NweRyG9NIvGy V15JsRD /i3PVtqcVlkAmz0XEk9u4dukCzpd9HVHpVxJVTBdu4GlMDpSqqt qeOixRIusAibu8lQAl8q1ouEHLCVAiBSaIEikQIMNJoF4EZBAX ZCMjPQPZBWJI37gFXdv2elVW550pkXVGxR1rIECJrAEKV kEAUqkwDRRIgUCZDgJNAEClMgmkEQNdoESqUH4rFoQAUqkIHwA JVIgQIaTQBMgQIlsAknUYBcokRqEz6oFEaBECsJHiRSIj EaJLBkyRKMGTOmbIqJidFgS3S/akqk7udQkz2gRGqSPusWQoASKYQeKJEC8TFcgwT09PTQokWLsm nQoEEKoawUS02/6pLYUiI1OJCbQNWUyCaQxGbaBUqkwMTzdrZAgAzXGAFliayUSW 169fPz0xib lZMiawvMe6vTIASqUyD87pEgBIpMFuUSIEAGa4xApRI1aGnRKq OZXMsiRLZHLPeNPqsFom8ceMGzp49Wzbl5eU1DXIVvdAVibx58 6YiB7m5uU0qB xMwwgoS S2bdsU46PyWNXEa5s2bRS32HXpSuTt27cV/LKzsxuWEEY1WwKUyGabep3vuFokUucpvaMDuiKR7 gCNzVTAsoS6e/vrxUU9PX1dVIitQIeG6GzBCiROpu6Zt9wSqTAIUCJFAiQ4RojQ InUGHpWTAJVCFAiq Dggg4RoEQKTBYlUiBAhmuMACVSY hZMQlUIUCJrIKDCzpEgBIpMFmUSIEAGa4xApRIjaFnxSRQhQAl sgoOLugQAUqkwGRRIgUCZLjGCFAiNYaeFZNAFQKUyCo4uKBDBC iRApNFiRQIkOEaI0CJ1Bh6VkwCVQhQIqvg4IIOEaBECkwWJVIg QIZrjAAlUmPoWTEJVCFAiayCgws6RIASKTBZlEiBABmuMQKUSI 2hZ8UkUIUAJbIKDi7oEAFKpMBkUSIFAmS4xghQIjWGnhWTQBUC lMgqOLigQwQokQKTRYkUCJDhGiNAidQYelZMAlUIUCKr4OCCDh GgRApMFiVSIECGa4wAJVJj6FkxCVQhQImsgoMLOkSAEikwWTop kdJo3Dt1Hc S8iCSCQTAcJ0loFGJlMbA46wLfBJyUKQ0BnXjZw liPE8CxefeOQoN15nR0ITbbgsG5E Hrh76w6eRuagsKR6P6VIC36Ce66l27PLtkty4hDg5QEP17vweB qC5DwxpPLqcQBESXj12BvBSXkolr7eXhl/z8MbIaXn1xqDX 9fOUeJrCTBV10jQIkUmDHdkkgZMmPCkZjuhg1jvsFx3wD4hidB JJYIpMBwXSSgGYmUISs2Aolpbtg0YQmO fjhRXgSikXl/ G1XSJlWbGISEyD 6YJWHr0KXxfRCCpQISSmkRDFwdFU2qz5BWOzB NgUZ9MXLDTYSlFaNKmiThOP3tGAwyMcfsI/4IfHIZ2xdMgP1wO9jajcSwocMxdt4OXA9MQ4GSKAIiRDmvw5Th E7HxZhjSiktLlSM30Bk7FpbH2w0biuFj52LHtUCkFdR fqVENqWB17z6QokUmG dkkh5Dp4c/A5zZo2GcXtD2DiOwthvjyAhNU8gBYbrIgGNSKQ8F16HVmD LAeYdOgFm9Ej4bT0EGKTcsoQardEypHrdQgr5n8NB5MO6GUzGv ZOS3HIKwE5b1zl0sUR0cTaLH6KzUO7ovU//xf/NPkeV4NTIVKySEnEMcwwa48P/toSg388ho3Th8Bi8JfYsP80zl1zweWj6zDB0hj2q50RklqkEFB x9DWsse B//t7V8w85Y EQjkgDsXpxcPK4tfvP43Ll49i3cR MLZfjSvBqShSqrcmypTImqhwnS4QoEQKzJJuSaQISS/dcOgbG h/9ik6D12MPc7PkVsoFkiB4bpIQDMSKUJywD0cWWoLw3at0WnIIu y69BTZBaIyhNoukaLkANw7uhRDDdujdachWLjrEp7G50NU5UqV Lo6GJtjmMonsBkOTXvis9WCsdQlBmsIipYg8MRMDh5ii0z8/xojlm/CVnSPm77uPsEwxStMpFyXi3DwTdBuxHnfD0lH2PkEcg trx2LEECO0 dAQsyskUpbmhp mOGH 3nsIzRRDJhch8dx8mHYbgXWuoUiv5U0GJbIJjr9m0iVKpMBE65 REApBlemL7ZCfMXzMP9raz8NujeOTyXpzAUaCb4RqRyNIxmPUQ v0wfj/mr5mLksFnY6xGNbHH5pRrtlsiyxuPhL9Mxfv4qzB05DLP2eCA6 S6y4SqWbI6GJtrpMIrvDfOoCOPbUw8gfbyE0vSJX0micnGWNMY u/hFWbDhi14TKu33mK4OTXbwik2f7YO7EneozZgYdR2ZBCjNgb6z BuxDRs3PY1rDpbYN7p8iuR8qIkBPs8e/2MpDQb/nsnoWePMdj IBJZtbzJoEQ20THYDLpFiRSYZF2TSHlRJO5evAH/6CDcPX8F3rHZVR4MF4iD4TpEQFMSKS Kgvvlm/CLCoTbRWd4R2eiqOKfrNZLpLwIUe6XcdMvEoFuF HsFY3MysbrUO6bRVMrJNJizn7smmGJvo6b4RqWUXZFURpzGrMH OWHdsbUY1aMrHLY8RmRW6Se8xAi78zucty3HsmlDYWJij 9OeCMxrwTiuFv4cdwwTNnkjGduWzBKv59CIl/zFCPM9Q9sWzYNw0xMYL/sBLwT82p9ZpYS Zog53SLACVSYL50TSJLHwAXiUSQyWUQF4sgldfysI5APgzXXgK akkjFGJTJIBaJIJHJFFfytF4iy25ziiCSySATiyCSyCDjIaSdg 7xSIueexv2jizDIeCy2uYcjs0SC2LNzMWjMely9/yum9VKSSHkunhxZjV2zJ2J8/x5o07oXnDZeQ3ByGG5uHI9hkzbgkm8Kcvx haNBDRJZ szv0dVYML4/erRpDcMxG3EtKL3KNxDUBIsSWRMVrtMFApRIgVnSPYkU2GGGNx kCmpPItyPUBYl8e u5RasIKCTyDPz8L2GZtQkm/HwfkRlROD/fBo7rriEg4Ci 6q0skWJkRAchzO85nj 8hd8XDIah0QSs2fg1hg8ej7UXniO5QIKSgLdJZHn8y cPcev3BRhiaIQJO 4hKuvdz51TIrVq5LAx9SBAiawHrJp2pUTWRIXrdIEAJVIXssQ2 NpiAkkS jI/FtW8HwnTyLng8OIS5Ng5Ye/UVkmJPY1apRG5yw7PgVOSKJGUfqimvU4acx5swomsPWBj8Gx 16gLz4Y4YP3kKJtn1RZsPPkZnCztM334bkckZyEpJR66oRBEvy 3mCzXbdYDBlP57F5iquttfUH0pkTVS4ThcIUCIFZokSKRAgwzV GgBKpMfSsWB0ElCUysQApVxejv9k0rP9hNExGroHzq2QUppwpk 8iR877BhPGLsed NDIUn AGRM 3w76bPmwcJuDLOXMwd 7csmnORCt0 FcrGAyZUPaJ7nCPw1g5awn23I96HS96ju0je6DnlAN4FptHiVR HzlmH2glQIgUip0QKBMhwjRGgRGoMPStWB4EqElkEadIlLLQyQ d8ubWC 7DICkosgTS2XyFFLv8Uw/R4wn/4LbgVnIr1EioJkX5z7YSh6GI7DVudHCIiIQlRU RR2ex2GdjXGtF9v4mlMDooiz2F P32YT/sZN4MyUFiQDN9zP2CoXi M3 mByOx3f8cPr0SqY0CwjsYgQIkUSJUSKRAgwzVGgBKpMfSsWB0E qkmkXJqA8/Mt0P6/vTD//EskF8khq5BIh03OOLtzCUb3M8fA4Y4YNXESnOytYWoyBF/tuIHA9CLFberSpr/xTKQkFT7HvlXEj3Oyh7WpCQbP3AGXwHTFtw 8rduUyLeR4XptJ0CJFJghSqRAgAzXGAFKpMbQs2J1EJBlIPDed dx5GoPssq9hkiL1pRuuXnFDQEpe2a/XyItj4H3zGjwD05CVEoGnt05i75b12LBqJdZu2oUjl 8jMDkfYqXfdy9tuiw7BJ4urvCJya4QRDlKsiLx9Napsvg1azdh 15FLuB YjPzqwTX0nRJZAxSu0gkClEiBaaJECgTIcI0RoERqDD0r1lYCM jHys9KRkZKCtKzSLx5//fVTdWpyRXxaWhbyRdI6f/0TJbJOdLmTFhKgRApMCiVSIECGa4wAJVJj6FkxCVQhQImsgoML OkSAEikwWZRIgQAZrjEClEiNoWfFJFCFACWyCg4u6BABSqTAZF EiBQJkuMYIUCI1hr7RK165ciUmTZrESUcYfPjhh2jRokXZZGtr i8jIyEYfI6yABFRBgBIpkCIlUiBAhmuMACVSY gbvWJDQ0OFlFTKCV/LJU0XODx9 rTRxwgrIAFVEFCLRC5dulTxjjg5OVkV7daaMnRFIpctW6bIQWJ iotbwY0M0R4ASqTr2y5cvVxxfMTExqiu4gSVRInVHGGuSWkpkA wc w9ROQC0S2bFjR8W74tDQULV3sjEr1BWJ7NKliyIHQUFBjYmEZe sIAUqk6hJlYGCgOL58fX1VV3ADS1KWyA0bNuD48eOctJhBu3bt FONn3bp1yMjIaGDmGUYC6iVAiRTImxIpECDDNUaAEqk69Noskc fP1ddR1lSoxDgB2saBSsLVQMBSqRAyJRIgQAZrjEClEjVoadEq o5lcyyJEtkcs940 kyJFJhHSqRAgAzXGAFKpOrQUyJVx7I5lkSJbI5Zbxp9pkQKzCM lUiBAhmuMACVSdegpkapj2RxLokQ2x6w3jT5TIgXmkRIpECDDN UaAEqk69JRI1bFsjiVRIptj1ptGnymRAvNIiRQIkOEaI0CJVB1 6SqTqWDbHkiiRzTHrTaPPlEiBeaRECgTIcI0RoESqDj0lUnUsm 2NJlMjmmPWm0WdKpMA8UiIFAmS4xghQIlWHnhKpOpbNsSRKZHP MetPoMyVSYB4pkQIBMlxjBCiRqkNPiVQdy ZYEiWyOWa9afSZEikwj5RIgQAZrjEClEjVoadEqo5lcyyJEtkc s940 kyJFJhHSqRAgAzXGAFKpOrQUyJVx7I5lkSJbI5Zbxp9pkQKzCM lUiBAhmuMACVSdegpkapj2RxLokQ2x6w3jT5TIgXmkRIpEGBzC 5dlI9LHE2537uJZTB6KJdUBSJEW/AQed6tvFyM58BlCkvIhkirHSJCXEIinDz3x6EUk0gtLIFPeDEC Wn4TgZw9x//5jvIzNhkgiL9uDElkNlIDF2iRSlhOFZw/ccefuM0TnFuHNtKcjxMsDbnefIS vSKklYqQEPUdIUtWxIstPRkhFTv1js1AsqZp1Q0NDtGjRomzib 2cr4dTSWUqkliaGzaqVACWyVkTv3oES W4 3FqNQEkADs0dBWtTUzhtcUdMlhjlSlexnyQcp5Y6wsbcCgtOhi Alv3SrHEVR17Bh mRsuBaOtKKKCHkeQlx2YcnkkRhuNxIj7R0wbdle3AnNQlGFaBZ F38W 76bDwX4kRtoNw/AxX2PzJX kFkjQQ09PIRr /v7VGqqZRX19fUWb/Pz8NNOIBtRam0RKXh3BAsdBMDUdg82ukcgQVck6JBFnsGzsEJh bzUdoeFJFC0rzfh0bZ0zFeudQpBRWxhTh4NpFcFTK6aYLvkjJL 1GMJUpkA5KowRBKpAbhs2pBBCiRgvABlEiBAJtbuNgLGwZ jk9a/i/eN1 N25GZECsxkEQcwTSjz/D X1vCdsdzxOZIkRd2G7/OGYgOH32G8b /REKZWAJFgX9ikW1fmDosxvbDp3Hm0EbMGNIPI384j4DUQkhlqX D90QEmZg74dscRnDn7B9ZPsEAvm6U4HZCC9t0okUroBc3WJpFi 700Y0ulTtPzf92G2wgVh6SKl iSIPDYDpu0 wF9bDoGvf3Tp9WPkhd/BnnmD0Olfn2Hc/heIyyuXSFmaG4Y5zsGS7Ydx uwhbJjYD31sluCkfxIKKt48UCKV8OrALCVSB5LEJtZIgBJZI5a 6r6RE1p0V9wRQJpEdoG/SC20 tcVGtyhklVSSkSLy HT0szZBx3/8G/Y7nsDz0m/4YdIw2AwxRvv322Hi7/4VEinByz2O0O85GhuvByCtWAq5OAN v01Bn75f4MCzBOQVe2GjTSeYzjyGZ/EFkMrFSLn5Paw6WWLJ5WB83LGH4qofr0RW5qBhr3WSyC4GMDZs g09tN B2eMbrNw/SKPz55QDYmHREy4/t4Osfihj3g1gxZXh53j9ohwlKElnivRlO653hHZtfntNby2Hdx RKLLwYipbhcNCmRDcujpqIokZoiz3qFEqBECiRIiRQIsLmFl0l kR5hO/waOPbph1JZ7iK60SGk0/pxhhdFLZqJfq3Zw2OGB01uWYdnaXTh9djVGdOiBqQqJLMC1RX3 w ZDVuB ZqXjGTuzzE2w7m2Le SCk5Plih10X9J70G57E5kEiFyPx8kKYdRyA711C8Z9OlEhVDb8 6SWRXM0xd4AD9HqOwyTUcmRWXoKXRJ/HVAAcs/rIfWrcfDT//ADw uBzfrd2Jk2fWwL6zHqYeeH0lUuK3E3Y/nMXD6NzynF5ZDMvOA/Dd1WCkVtwmp0SqKrPqKYcSqR7OrEX1BCiRAplSIgUCbG7hFRJp Nv8Qdk8zhuGYHfCMyUbpxUhpzCnM7D8a6/9cB/vOHeGw4wmePvVDWGI2CmOOYIpeT0z7o/JKZBFuLTXG59bL4RqRURZfirLowVoMaP85HPf4IT43BwFnVmDc YFuMn/MdVq9ejGlDrDDkq1/hFpmFTt15O1tVw69uEmmBeQd3YrpZH4zZ6o7IsjcPUsSe RrWjutwfO1IdOvsAD//MKSEBiAsMQsFMUcxvachpilJpDzvFb4cPxnjZi/D6tVLMG2oFWxn7oRrRCaKKz5fQ4lUVWbVUw4lUj2cWYvqCVAiB TKlRAoE2NzCKyVywUU8PDoXlr3HY ejWORISmViFvqP3oAbD3dhYo9OcCh7JrLcCmQJRzG1ikRKEXXy S/TtMQBz999DZI4I4sxAXPzOBu0//BeG7XiOuOwChF1cjuF6n6O7xTCMHtkfPVq3hcmM3/AoLhddelAiVTX86iyRZz1wZH5/GI3/GR5RWZBI43BujjUc1l2D564pMOhSKpGlz0SW/8kSjuOL6hJZGIaxVmbobj4Uo0cOgF6bdjD5Yi8exORAXPHZG0p kJUHdeKVE6kae2Mo3CVAi32RSrzWUyHrh4s4KibyE4IDzWGjRB 5P2eCEuOxrn5vTHqHU3ERx4GNP1apNIoCTJE79 NQhGpoMwetIXmD5xHMZ/MQKG//4MTrt9ERt0DatHmWPg1A047OyOhw/d4bx3Loaa2mDB0ef4v7Zd UykikZknSXyXAD8LyxGf OJ2PUwGpnRFzDPejTWXn FgCNfometEilDwo21mLh0B/647IaHD /h6r75GG4 GPMP yAxr/zLgyiRKkqsmoqhRKoJNKtROQFKpECklEiBAJtbuJJEhiTH4PIC c/Sduh9PvI5g9oCRWOsSitTYP/FFHSQSchFSX7nj7L5NWPn9cqzbcRiXLqzFiE7GmHc6COHOy2De sT8WXwlAasV9TlmOD7bYdUWvmUfx/z5qT4lU0firu0QGIiHGGd9YmWDK iqykQAAIABJREFU3od4fGQuBo1ag2tByYg9NbMOEpmPu8v7YYe bN5Irc5r7DNtGdUfvLw/DPyG/7Gt KJEqSqyaiqFEqgk0q1E5AUqkQKSUSIEAm1u4skSmFiLx4lyYGn Bn9Y4wGjEGlwPSUNRysk6SKQcOa9u4cQpV/jHxiEhKRnpecVIvLII5j2d8MvjWCRcWYg n9tgpXskMio/AS6NwP6x3dBj0n785YO2lEgVjb/6SGRSQRIuL7CE2fSNWOVgArvVVxGYUoiU03WTSJfFxvjNyxfpS jk9OFEP hP34nlsLiVSRTlVZzGUSHXSZl2qJECJFEiTEikQYHMLryKRxZA mnMUsk74w6v4ZzL67huC0YkhT6yaRuZ6b4TjAET cfY7EQhFyI93wy0Rj9J24Gw9ic1AUdhTT ujBetEf8IjKhqg4C2GuWzG2Z1fYbbqLlp92pkSqaPzVSyKLpEg 8PxcWJsbo/pkZll0JREqRFKl1kkgJwo/PwLSNx3AvIgvFxVkIv7sd43t1x4iNdxCRWf7l9bwSqaLEqqkYS qSaQLMalROgRApESokUCLC5hVeTSLk0Dqdm9kWbj3thweVgpBX LIauTRALS1IfYPXMwzAfaYdzUaZg4chCsbL/E9pvByCwq/d7IBHjumwe7flawdZiEadPGYbiVMfqNW42zL1LQvgu/4kdVw69 EimHNP4MZpu2xX8M5 H8qxQUyWV1lEg5xIkPMHm0A4Y4TCzL6Yj xrAauxJnnichv4TfE6mqnKqzHEqkOmmzLlUSoEQKpEmJFAiwuY XL0uB78wKue8Ugp7j050WkSH7ugvNnb8M/Nb/s07Xyokg8uHwBbgEZKKj4uK28MByel6/AMzQLhZW3MeXFSAlwx7nffsKalauwfvsBnL37EkkF4orfz5ZDn B6CR1ePYufG1Vi fBU27TkBl2exyBFJ bOHKhx7tUmkLM0fty 64El0dvlPUkqT8eLmBZy95YeUPBHkkKM48iGuXHRDZma omWleX9wxRmeIRkoqBBEyMV4cusMdlXmdPdxuPjEILtYwp89VJ DTrRlKpG7li619TYAS ZpFg YokQ3CxiCVEZBDUpiN9NQ0ZOaLIJFVfMeLcvlyMQqy0pCSko6c Igkqd9Hjb2crUxI0X5tECiq8puAqOS1R5LRyV97OriShG6 USN3IE1v5JgFK5JtM6rWGElkvXNxZiwhQIlWXDLVLZC1Np0TWA kjLNlMitSwhbE6dCVAi64yq5h0pkTVz4VrtJ0CJVF2OKJGqY9k cS6JENsesN40 UyIF5pESKRBgLeGrVq3CjBkzODUCgw8ICfzq5l/NV1MyWyrqQaZ7/169fr9Dnio48 UhyLdnZ2OtGXyMjIxkkmS9UpApRIgemiRAoEWEt4t27dFCfXFi 1acL6RGPj7 9eSCfVs1tfXV TYz89PPZWqoBZKpAogCiiid /einHD84R6zpNeXl4CMsbQpkKAEikwk5RIgQBrCadEqucfAiWyl oFYy2ZKZC2AGnkzJVI95wllQadENvKg1pHiKZECE0WJFAiwlnB liVy3bh1 //13nZgeQTxZURbW13q1atFG2kRNYyEGvZrG0SefnyZcVxkpGRUU vrdX zskSuXLlS0XddOV/oSjvbtn39K1eUSN0/blTRA7VI5Llz5xQHdU5OjirarTVlUCIbNxXKEvnq1avGrUyFpX fv3l0haAEBASosWXVF8YM1qmOpbRKpup7pRknKEunj46MbjdbB VhoZGSnOa5RIHUxgIzRZLRLZCO3WmiIpkY2bCkpk4/GlRKqOLSVSdSwbUhIlsiHU6h9Diaw/s6YeQYkUmGFKpECAtYRTImsBJGAzJVIAvGqhlMhqQNS8SIlUD3 BKpHo461ItlEiB2aJECgRYSzglshZAAjZTIgXAqxZKiawGRM2L lEj1AKdEqoezLtVCiRSYLUqkQIC1hFMiawEkYDMlUgC8aqGUyG pA1LxIiVQPcEqkejjrUi2USIHZokQKBFhLOCWyFkACNlMiBcCr FkqJrAZEzYuUSPUAp0Sqh7Mu1UKJFJgtSqRAgLWEUyJrASRgMy VSALxqoZTIakDUvEiJVA9wSqR6OOtSLZRIgdmiRAoEWEs4JbIW QAI2UyIFwKsWSomsBkTNi5RI9QCnRKqHsy7VQokUmC1KpECAtY RTImsBJGAzJVIAvGqhlMhqQNS8SIlUD3BKpHo461ItlEiB2aJE CgRYSzglshZAAjZTIgXAqxZKiawGRM2LlEj1AKdEqoezLtVCiR SYLUqkQIC1hFMiawEkYDMlUgC8aqGUyGpA1LxIiVQPcEqkejjr Ui2USIHZokQKBFhLOCWyFkACNlMiBcCrFkqJrAZEzYuUSPUAp0 Sqh7Mu1UKJFJitJieRshxEPX I 2734BuXD5GkOiAp0kO88eDem9tFyYHwehaOtEIxZIowCXLiA Hz6AEev4hAWkEJZHLFxqozomQEej1DWFohxBUF1Fkihbb7eViV dksLMpGcmID4 PjXU1ImCiVSVDZfVpCM0BeP4fnAC6/isyGSVG4B NvZVVNb1yV9fX3Fb/P6 fnVNUzj 1EilVMgR26MLx57uOHeixjkFr1xEgGkGQjzeYh7rg8QER75 hhTOt4S0vIglpSfCCS5CQh 9hgPH79AeGo xNLXx1ppzboqkdJ4Lzw5fx2 Cdkoen3SVIapVfO1S2Rp7v3wpDT3z2OQU1jyZvulGQh/9gj3771Abm4hIM1HflIwfJ88gOfj5whPyXsjv9L8ZIT5eeHhw6 cISshBsdK5FpAiPykUL7wewcsvEmkFYkjfrJVrGokAJVIg2CYn kSUBODzPATYWlpiwwxNx2WKFNJWhkkTgzLdOsO1njcVnwpFWUH EyF0fj2oZpsJ/ MzzisiEuXS3PQ/D1XVg63QkOY8Zg9GgnzPj ANwjs1H8xlEuRvS1DZhmPx077schq6wAoM4SKXmFI/MdMbi03ds9EFu93dIInFk2FrZWpe0OQ6pSu69vmI6R03fgflxW ebshRfjFDZg7bRwcHR0Vk9OsXbgfnwWRHCiOuYeDK2dinIMjHE bZYdSEBdh NQBphZIyXpTIhh1YlMiGcdOuKAkCjy/GOFtLWI7bgrsR6WXHjHIbpZHnsWLScFhZDsfYkQ5wUjrOyo 5MZi0wblMGHNDbmLv9zMwztERY0aPhtMXy7DvTiiepEpQWHEe0 TmJlOcgISYF6fe3YfuY2Tj2xBd 0SkoFtUgXcrgNDxfu0RKEPTnt5gwrB8sx/2EO2FpKK7i 1JIoy5g1ZQR6G 9AAHerrixdzm mewIJycnOIy0x5jppfkNQXpZcuXIC7uDA6tmYdJYJzjY22H0lK XYe7t8uzw/AuG39mDVV2MxarQDHBzGYeYP 3ArOB0FNbx30TC Jlk9JVJgWpucRIqfYF3/dvjPP/4XH1iuw93oLIiVGEkij2Jqnzb4519aYujPvojPLX37LEaMyxqM 6PoR3us B5crThzisDNYbGsK62mr8OuRkzix 1uMNDbGmJ9cEZMtqiKn4hgXrBnRFR 91x2zL4UiteLMU2eJFD/B oHt8d9//A0fWK6Fa1TVdksjj2Ja3/J221Zrt123j/D37rNxKTS1/IQnz4LzAiP0sByDuUuWY/WaNVizZg3W/XwRfmn5KJGlwW3zGJiajcI3Ww7i Il9WOVkht623 FcYCoKZbwSqTRk6jVLiawXLi3dWQzvzbbo8mlL/O19c6x0CUWaSLmpUkT/ RXM23 Av7xngHmzv8HaimNszZrVWOzUF60/ag3LHy4jNCEA57 zh6X1FCz/ Q/8eXwPvnM0h6njjxj1sw/C0ovLziO6JpHyvGf488fvsXiiFfp37InhE8ZhyoqjiErIVgald fO1S6QYT7eMQPc2pbk3w/KrQUgtfddd SeNRvTJ6ejX4UP89R8DcXyZA ytbGA5ZQ1 PnQSpw/vwEI7U5iOXosrQSkozA/Eme8dYD1sOlb88gdOHP0ZC4Ybw3TsZtwIjYf/ eVYbKMPM/s5WL/3CI7tX48ZwwbC4YfTeJGYzyuSldwb8ZUSKRBu05TI9tAzMkTrT 4fip/sxyFa8OZYi6vh0WAwwRoe//x/sfymXSHHsTaxzGgLr3q3wz57zKyRShrQ76zFmxNfY6xmJbLEM8 qIYHP/CAB3tt BxbA4UbxTFsbi5zglDrHuj1T97Yn6DJbKDot2b70UjS7ndJ76A 5cCKdldIZEnsTax3soV170/L2q2QyBI/bB/RHYOWXcaLiFRkZmUhq3TKKYBYJoO8xAubbDrB5Muj8IkvgFQuQ tL1b9GvoyW dS79hynn7ewGHleUyAaC06qwconsatAXBq1bY iGWwhLV3orKo3BqVkDYWPcAf/491Dc9/QtP76yspAR5YZfppij7/BlOPEkHrlJd7F54ih8vesuQjJEkMmLEXtqNoy62uF9611wC88o O4/onEQWJ DFzf1YZGuILv/9LzoO/AobT3giPbdIqzJZvTF1lcgehqW5bwPbdS4ITnt9wUAacwanZxh hsHEHtPzYCvMMW8F47E/Y/iAB6SJZ2a3tyHML0a/HECx39kaEx1aMtRyKefvdEZ4thkyWj0jnzZj99ab/z957RkWVrY26 9zz49wzznfP3l/cX /QZgwgRlQUcxZMoIi2CXMGs7Y5tlkx59Bm0Ta1sbvNZEmCIgYyk iXnop47KlAEqS4q0QVOxiiFtdac653Pu9aqp94VimtBv7J7XEe aNu7Hyst xOcWU1KYStCRydh0mcT FxGkf3HGq/KIxN/6EhASqSfBuimRjbF2dsXBvAX2O54RlaG0MUkk5yZ3Y9iCqXT/W30cZBKZGsX99Y4MGruRbdOsqd/ZVSmRUnKiA3jy/BXx2QXyT4SSjFfsH2VO85Fu MVmKj8lFhJzfz2Og8aycds0rOt3xlUPiew80QV7C3Mctj8lqtR JVGcm9JdGXcDRdwpUdzfMEoZd2cadHZVVSKlKVeZaWWFs9tdfn vyjCdPvXkdl1F2nU5xADvsmtN 3BG8Y7Iplhbx6YYrXcx6suzue1KEROq8VwmJ1BmdCTVUSKS5zX hmD7fE0uEHfnmXqjqjIYm xMw DrhO6s63je0JCIxQxC7N4 0lV/p2GMDCsz7EZRdTkhND0LMXBMdmKi6BkWQSengcbSxG8J Dj/P842f5caS2SSRIyfA9zKyxs5iwaDZDhszh0JMI1WU8JpTMCqFU VyItu45l5rBWtHbYxP23KarLhKKvzGFqp964OHenfhNbjm/exo3nH4jMLlYWFaRkP1pNP4tezL98kYc7BtNp0BKu rzidZAXT5968SokGH//MGLir7OwWwv 23opd18nUlozKPTfhX3rrsw8G0Bs6WVLFUYh/jAkASGRetKsqxLZZd5J9o7vQBvH3XjEKKqGkugLTO0 jHXn1zG4SRMcdvvifXUDowaMYdPNQB5tHEBTm1KJLAe26AO/nXZjzSx7bDrZseisH4nKC1aKYh yadQAxmy6SeCjjQxoaqOXRHaZdwK3CR1p67ibF8pqpyT6ItN6D GfduXUMMVPE7XV1I04DxrDxZgC/bRxIs65lEln0cgsDzZrQtu9wRo0by6hhgxk biH7H4STlicBaSbB55Yysr8t41xWsXHjMqba9aT/5N388vEzsg/U4prIcvnX4lchkVrAMtlFlRLZdTaHdk3EpsMotj36QKr8XV5Cz JXZ9HNYw6k1w7Bo7qCSyJLE39gwzIquzgd4EpGhFI/SQRbx8clZ9q bzYhunbGbf5IlP70nNlNxzXZtlMjc9/e5dMMHj/dh3L1whafhSWRXuGGkdOym83 1JbLbTA7smEi3TqPY8jBckXtJLFfnDcC6zxJOrB6Opbk9vi/fyW 0VJ3wzo/izgpbWneazOGHh7jk0gqroVNZPGc6UyeOYeTQwQwfv0h TWxK6n1W9DLnmw4LuR2aoPqQku/1A3bmzbDf6cmHz7XgbiXTSa9OkQiJ1AlbWaM6K5Eu1/E4OYMu7cawzzuWzGIJMZem033Yeu55uDG6RRPsV 1itl0/nNZe51VyJgE7bKuUSGmmB0eXTMPBphn/qNeJCXt IyKjgJLiOH7d7ER/p7Vcf5VMZsAObPWVSJdrvDg5E5v2Y9jnFaOI /IMegxbz10PN8aYmynj7l8W9067chIpJfO3jdj37IvTom0cu3CF K2d24WJrRXu75Vx9nUyuJJf311cwxLIx5jaDGD60BxbfNqDLtK N4xWVRJBUSWbaHaPebkEjteJnm0qUSOYeLj04wt1cnxux6gn9a McUykZjbD4e1N3jiNp62LUolsoiPl2bRtfUAll97RWLlW5WlmX idXMGskV1p8W19Oo7dztTj/oSn5sufBFH7JFJ242EB QUSJCVSCvPzKZZdKmOaCVVFVX2JnMW5X47j0rczY3b8xru0IiR xP E6cAS9l9zhNzdnrCxkEvle1TeFifieXcaQjl1w2nCD4OCTnJvU mGZNW9Jj1CK2Hf2RC6d34Sq7ZnLEem6E nBqZlcsG3Zm5v6HhKflU5Aezs9rh2L 1/ i/ YXvE8TElkG2Di/CYnUk2vdlcibhIdcZk4XK8Yd8iUuIwr3mT0Yuu4e4a9PMMG8EV 17tKf90FVcC0oit7iQYHUSWZDI2wBfXvxyld2TumHZeTKHfWJ4 2ALTv1HsvpaEEm5xRQGG0IirxP26jJzbTow7qAPsbK4Z/Vg6Np7vH19gokWjVVxXw1Uxl1JIvPjgnj88ClBsRkUyB4lUpJD xM1F9GjSjunnXhP/7i7rHLrSa wajl57yJMnD7m6ZzoDOg9kwbkgEnMkohKp434lJFJHcCbVrEwi LwcHcmVBLzqP28u wM kRf2ESz97Vt98xatTU2lXKpGFYZyY0IE2w2WnvtMqVSEVwpX0L gg/j1 45jaN3m26UK/1JPY U1yzXSsl0qRyVr1gtJHICwH uC/ui83Y3Tz5kEr0jQUMdFjFojtRBJ eQQeVREqR5sXgcXoFo3p0ZZjrAR6 TSUn9gIXJjWiQcOeLFVe8ygtySbyxlL6turD4qvD/Yx64JXencdQAjJ05n qRxjHW2o93fGuCwQ1Qiq5dV/ZYSEqkfP qyRL5PjOTqbGs6TDyGn98ZZvYYwpq770iOPsuEFvVp8Of/l79a9mfMpOnMmj0TJ5v6/OvfWjNonAtHnn8iLf0zSalZFElKPw2W8PnJKno3asmk079ycJI 1Deq3ZsCYSUyfNZuZTjbU/9e/0XrgWFwOPyc o4AW5uaq5waGhoaqz5b87uwmdHG5TnhCJNdmd6bjxKP4 p5hZs8hrLnzjqTos0w0Vx/3wLEuHH4eT0ZekfxRGyXSsrpASfwZJlg0ZMhWX167L8bGrAfzr 4eQlK8YW0m6Dz/YNafd9LO8TsjF3MJCFXdISIj6uP/AOeJh44aDL54TWZ5lOYkMiSXixnx6dpnIyEPBeJ2ZR//hq7gR onoC9NUEil5d4IJVm1w2PaYj2V3xIEkj4zkNLIKi1XPni35/JwNts1p/S//ZMJRf2KypLX2OZHlqdWG37WSyKBo YfvPl0nsO JBz/OH4TDymvcjs4h6tJMpUS I/v9Q 7tnoF9956MXHSAe6FJ5BZJkWbe5rarBU07z BiYBx5ysNxSfQZJlu1Z9w bz4mJpD46gEX921g2aLFrNh8kIuX1mHfsgszTvkTnV12DK8NfG tjjEIi9cxanZbI5FzirsygU6fJbF8/ko62q7nzLoW8hHNMaNEAy05DGT1uEpMmT2by5Ek4WNfjL99Y0t dxJvufRuFxZjVzVpzE91Om6qLngpc/MKBJS5xP/sq5LUuZN20SkybJ2k9mkoM19f7yDZZ9HZmx7wlx6TpKZFIuce4 zsLYui/vncGXc5r8X9wz2PYnE8/xmlmw4h39CWdyFr90Y3syc7w4H8fbCXNo16seqxx9JK73FXPKB w6NaYDH2CK/isoVE6rhfiUqkjuBMqll5iYwnJ/4n5nW3wcJpK6sduzBk5XVCEnJIvFQqkR/45D4bawtb1v7yjpTSOySAorCrbHRdyXEP2bNjlYMsCGDHUHPa/8vfGX/kJdFCImss 9pJZCzZ8TeY36sbkzauwrHrUFZcDSIqV0LiZYVEetw8yWGXIfS 26sa4lSd5FJ5KXul1oUUhhOy1o02HcRzwjCRTead10esDjG7bm anHH/Pw1hXOnb9PYEQUMfHxJGfk8unOMvp2HMmWX5XXYtYYna9zRUIi 9cx73ZbIAiQxF5jSsQPWrRrQeeltwlPykSSeY6J5YwZ9f4Nn/mGEh4cTHv6a28t70rC9Mwcf hGZkcvbM5No36I7s449IyIzn9zEYK59P5AWrZzY5/mRmOgIPryTtVW8Xt9eTs G7Zl44AG kRnyb6vQ7jmRykpkUj6S2ItM7dgRa0tF3G T85EknWOiRRN53E /iHsiBx74Epmey5sTE2jXoidzjj3lY0Y OYnBXF1hS8u2Y9jnEUNq6AnGt7Ok/6LTPI/MoKAgnQ PdjK6bQvsNv9KxOdCIZE67ldCInUEZ1LNKkpkniSOK7O70cq8N ZYNOrPo2isS8iQkqSTyDR7r 9PCZg6XQz6pKk6yIUkiLjKziyXdpx/g13efyctNIuTGGoa0ass3DUaw8/FHPheJSmRNpV9bicyVxHF1Xk9sOrekQeeFXAmMJ7ekhGSZRJoP Yvt3XbFu0YFW9stwc/8ND19//P398Q8IITIlkTSf3YyxtsZ xTm8YjLJTXvH/c0jseo0gf1Pg7izdRzDu9iy/Lw30dn5ZEU/59CUHnR22s5D2RMBRCHS6JuGkEg9Edd1iZTKHo8zqT3//Gtb5l1/S0q lBK5RMruci592LgMYtEX10QWxT9j/8yBdOlux hJ05g8xo5u1n2ZtO0OYWl5XzwItshA10SGJ Ujj3uyLO42zPspjGRZ3EnncLYw zLuCtdEQmHMb yZ2p/O3W1xcpbFbUtX635M3n6Xt2n5FBfE8HjvTOy692Lw6ElMnzYe 97WdB/5PRf9E8gpFs J1HW3EhKpKzlTaldJIqUSoi/OZJLFv/HfrWdxKfgTudKSMokM8OLyDCtaDNvM8w9pFY8LRZ94cWQeg7v1 wHaUM1Mnf8fg7l3oO3Ezk92e8iopp1Y J9KUsqVNLFpLpFRCzOU5dGv8Da1nnCcgLpcSlBLZoiPd/ v/8m9//jt/t xKt9596devn I1YCxb7oWTmPqRh7tnMrhXP4Z9N4kp44fTy6YP4zffJCQpk/gXB9gzoTs9 g3nuynTcB5lSBE9n4UxAJ4itrtEmtzssKidQZnaJhnZPIkkT8b p7n otIMuTfTVhMvM91zv34M4GJ2fJPdtK8dzy6dIEHwSnkqD7qlZA adIeL118QkaEURGkhKW8e4374B1YtXcTiFZs5cP4hrz7JHtr9J fiS1CDuXLzOi4h0ZE/Skf1UuxJZksjLWxe4/iKCDHljWdw3OHf2ZwLKx31ZEXd2hbjvKuJOL427gMSQR1w JIt7MUtWbGa/LO6E0rilFCa/5sm1o2xbs4zFi5exbtcJbnpHkl6g G5t8YifL/NbnSlCIqtDydSXKSEp4A6Xrj/nQ1quXPKKP/nhe 00526/JD5Tdke1lLz3T3C/dJ U5HjePrrCpYfBJGVV ppVpBSmhvHs2lG2rpbtayvYtO8c94PiCEsrpqC2fu2hqadQTXy aJbKEpMC7XL7xjHepCsEv/vSSny e47ZfHBnya8il5H14xtWLlzl/5ChHDx3k4MFKr8Nn fVNMtlFUvITQnnsflie/6XL17P79M 8jMmQPzdUmp9IQtB9Lu3fyMply1i5aS8/3vEnOiO/4ocRNeMRk/UnICRST4Z1TiL15FFV85L8TFISPpGQmkWBRLvHWFRbIqtasZ7T 5HEn/k7c0kKyUxP59CmJ9Lwi fPOSlcpJLKUhHb/C4nUjtdXs3RJAVmyfS0hhcyC4gr7moyBuDu7ZrYEzRJppDgk WSmJJGYnE5ukeKDetmapBTnfiY5MZHUzDyKSsQ57DI2xv9NSKS ejIVE6glQQ/M/UiI1hPa7s4VE/i4etTOFRKpFI2b8DgEhkb8Dx4Cz/jCJNOAYRFeGJSAkUk eQiL1BKihuZBIDYD0mC0e8aMHvEpNxSN KgGp4T FRNYMcCGRNcO5Nq1FSKSe2RISqSdADc2FRGoApMdsIZF6wKvUV EhkJSA1/KeQyJoBXl4iHRwcmDVrVq17RUQov6u9ZpDV bXUiESuXbtWtaElJSXVKahCIo2bTiGRxuMrJNJwbE1NIn/44QfVMTcmJsZwAzXRnmq7RG7dulWVr6ioKBOlDOUl8k9/ pPqCxVq0 9eXl4my7c2BlYjEmlmZqba2GTPBKxLP0IijZtNIZHG4ysk0nBs TU0i27Ztqzrmyp67V9d/artEWllZqfLl6 trsukSEmmyqfnDAhMSqSd6IZF6AtTQXEikBkB6zL506RL79Xv1 JTU/XoyXBNxY01hmEpJNIwHGuql9oike7u7qpjRumxozb8X79 fZWki0qkYbdqIZF68hQSqSdADc2FRGoAVMdmC4k0TEKFRBqGY0 31UlsksqZ4GHo9nTp1EhJpaKjK/oRE6glWSKSeADU0FxKpAVAdmy0k0jAJFRJpGI411YuQSOOSFhJ pPL5CIvVkKyRST4AamguJ1ACojs0WEmmYhAqJNAzHmupFSKRxS QuJNB5fIZF6shUSqSdADc2FRGoAVMdmC4k0TEKFRBqGY031IiT SuKSFRBqPr5BIPdkKidQToIbmQiI1AKpjs4VEGiahQiINw7Gme hESaVzSQiKNx1dIpJ5shUTqCVBDcyGRGgDVsdlCIg2TUCGRhuF YU70IiTQuaSGRxuMrJFJLDi6EAAAgAElEQVRPtkIi9QSoobmQS A2A6thsIZGGSaiQSMNwrKlehEQal7SQSOPxFRKpJ1shkXoC1NB cSKQGQHVstpBIwyRUSKRhONZUL0IijUtaSKTx AqJ1JOtkEg9AWpoLiRSA6A6NltIpGESKiTSMBxrqhchkcYlLST SeHyFROrJVkikngA1NBcSqQFQHZstJNIwCRUSaRiONdWLkEjjk hYSaTy QiL1ZCskUk AGpoLidQAqI7NFhJpmIQKiTQMx5rqRUikcUkLiTQeXyGRerIVE qknQA3NhURqAKTjbEmsN7cfvSIhq4ASHfswRjMhkYahKiTSMBx rqpdaKZGSOPzuPiY4Lp08UzqIVJE0dRIpzYzmle9L3iZkkS poqF8koTsxA 88vXEwzuQD4lZFEqkFRYuzvpEeJAPXj5BfEjK/mJ hYXr2B9CIvVMqJBIPQFqaC4kUgMgbWdLM4iLSiT18RbGLTnLy5 AQIpNyKSyueFDUtltDLS8k0jAkhUQahmNN9VK7JFJK5qdoklKf smPycs54BhIclUR QVFN4dJ6Peoksjj0HEsmTGfr3bck5lVxDJRmEv7gKGtnjWfM6N E4Ojgweur3HPk1nNRcmXVKyX7/K8fWzGKc0yhGjXRkzLTvOfzwLSny VqHWusaCInUM2VCIvUEqKG5kEgNgLScLc3y4 yG5Syd0JPm1sNwHj ZNecDSMo0jTcAIZFaJlTN4kIi1YAx0cm1SiKl2QRc3MqqZRPob dGZoePHMmn1j0TEpZsoXVAnkUVeP2DbshNTTr4kOvtLiSx4d40 VDj3p 90ithw6xZnDW5ht15kuIzdwMyyJvIIIbq4eSa8 Y1j4wwFOHN/NIoeudHXcyO2wZKryUpOFpGNgQiJ1BFfaTEhkKQnj/C8k0rBcpXnReN9wY1YfS r/04xeUzbw49MIstSfyzFsABp6ExKpAVA1ZwuJrCYoE1msdklkPj F t9k/dwBtG35Lkx7OrDn5iKT0XBOh WUYukmkhIhz07GxHsnG269Izi8BSRbvL82je8uBfH/rNQnxj9k23p6p2 8SmpSPRJpH9MXZdGk5hPUPw0g2jc/mXwIx4BQhkXrCFBKpJ0ANzYVEagCk9WwpGb6HmDF6Ogsn2TJ43 nE8YzIp vJDuNY9G6KBkEhDUAQhkYbhWFO91CqJlJ3EzfTn NzxzJzvjN3QeRx5 pHPhSZyEKkiabpJZAnJgXc47/6Y8ORsiuX9Ssl vJYBFr1wvRpMXGo0AU eEhD1mVzZApIswk5MpmMrB354FE6qolEVEdWdSUIi9cylkEg9A WpoLiRSAyCtZ0vJCbvFGXcv3vrf4tS5x7xLyVEeILXuzOANhEQ aBqmQSMNwrKleap1E5oRz9/w1PF/7cfvHCzwKSyDLVD6JVpE03SRS0ZG0RCq79FHxkx/N/TVDaNNpEoc8IslU3YxTRNSLyxz9YT6je9swaO5hnkSlY8JeXQU l3SYJidSNm6qVkEgVCqP8IiTSCFil eTlSygpKSAvr5gS2UHSRH6ERBomEUIiDcOxpnqpbRIps6r8vHw kJRIK8vIoLilReVZNMdNmPfpIpGo9RUn4X1yFfefOjFxzleDEX FQOKc3C5/RqZo 0ocW3Deg0bjt336aY/F3rqrHp8YuQSD3gyZoKidQToIbmQiI1AKpjs4VEGiahQiINw7G meql9EllTZAyzHn0lUpofh/f5dYzt1Y3Bc/Zw73WK4vR1aXjSAhLDA/B eo/LO6fSp11XnPc IeJz3b8oUkhk6Uag4/9CInUEV81mQiKrCaqOLCYk0jCJFBJpGI411YuQSOOS1kcipTkf eXRsKY69euLgsofbwQnklJ66l STmfqZ7MJi1fN2Sz4/Z9OQlrQdfwjfyEyTrtAagrqQSD0pConUE6CG5kIiNQCqY7OFRB omoUIiDcOxpnoREmlc0jpLZNEnPI8vwr5Hb0YvPcLDN7IKZNnl P8Xht9ixbB0nX0SRVqCcXhjEnpGtaTv2AN4RGSq5NO4I/7jehUTqyV5IpJ4ANTQXEqkBUB2bLSTSMAkVEmkYjjXVi5BI45L XYm0aIvD gvc8wwgMDBQ/gp6G0tGfgGJz91wtjHHapgre9wf4fVSuUzQa6LScsl7f4nZ3dv Sc/p Hr5NIy83hTd3NjKiXTtGbHlIeGqhqEQaIrVmZmb86U9/kr/Cw8MN0aXJ9CEk0ripEBJpXL6m1ruQSMNkREikYTjWVC9CIo1L ncl0rw DVvb0Kv/IAYNUrwGzzrAi4 vub60H2b//hf 2apLhfmDBk9k2/13JGXG8fzwPIb06MWQ76Yxe5YzDr1t6DN2LVf8P5EtHvFjmMQK iTQMR316ad68uUrk37x5o09XNdpWSGSN4v7DVyYk0jApEBJpGI 411YuQSOOSVieRJZ98ufHjEfbu2c3u3WUvt7OPeJcUQ C98xzbv6fCPPlybie4F5JIZqGUwpQ3PL5ykE3fL8TVdTFrdp7g ll8U6SbyBQ7GJQvidLaehEUlUk AGpoLidQAqI7NFhJpmIQKiTQMx5rqRUikcUmrk0iDrbWkgMyUB OLjk8nIL8aEnppmsCGq60hIpDoy1ZwuJLKaoHRcTEikjuBqaTM hkYZJnJBIw3CsqV6ERBqXtNEl0rjhm3TvQiL1TI QSD0BamguJFIDoDo2W0ikYRIqJNIwHGuqFyGRxiUtJNJ4fIVE6 slWSKSeADU0FxKpAVAdmy0k0jAJFRJpGI411YuQSOOSFhJpPL5 CIvVkKyRST4AamguJ1ACojs0WEmmYhAqJNAzHmupFSKRxSZeXS CcnJ bPn29Sr8jISOMCMGLvQiL1hCskUk AGpoLidQASI/Z27ZtUx1I4 Pj9ejJcE2FRBqGpZBIw3CsqV5qi0TK7kwuFbCoqKiawqP3espL ZOnjBk3pf09PT73H Ed1ICRST/JCIvUEqKG5kEgNgPSYbWlpqXrsU3BwsB49Ga6pkEjDsBQSaRiO NdVLbZHIjh07qo4Z3t7eNYVH7/UIidQbodoOakQiT548yc6dO Wvz58/qw2mNs4QEmncrJ05c0a17aSmphp3ZQbsvXzcKSkpBuzZcF0JiT Qcy9atW6veXGXfevFH/5w7d0613yQlJf3R4Rh9/e3bt1fx9/PzM/r6DL0CIZGGJlqxvwsXLqj2h1IX aP/r1evnmqbFZXIivn6qv4SEvlVpbtODVZIpOHSaWoSabiR1Y6ehE TWTJ5qayWyZuhotxZra2shkdohq5tLC4msm3n9GkYlJNJwWRYS aTiWuvQkJFIXatq3ERKpPTN1LYREqiPzlU0XEvmVJbwODVdIpO GSKSTScCx16UlIpC7UtG8jJFJ7ZupaCIlUR Yrmy4k8itLeB0arpBIwyVTSKThWOrSk5BIXahp30ZIpPbM1LUQ EqmOzFc2XUjkV5bwOjRcIZGGS6aQSMOx1KUnIZG6UNO jZBI7ZmpayEkUh2Zr2y6kMivLOF1aLhCIg2XTCGRhmOpS09CIn Whpn0bIZHaM1PXQkikOjJf2XQhkV9ZwuvQcIVEGi6ZQiINx1KX noRE6kJN zZCIrVnpq6FkEh1ZL6y6UIiv7KE16HhCok0XDKFRBqOpS49CYn UhZr2bYREas9MXQshkerIfGXThUR ZQmvQ8MVEmm4ZAqJNBxLXXoSEqkLNe3bCInUnpm6FkIi1ZH5yq YLifzKEl6Hhisk0nDJFBJpOJa69CQkUhdq2rcREqk9M3UthESq I/OVTRcS ZUlvA4NV0ik4ZIpJNJwLHXpSUikLtS0byMkUntm6loIiVRH5iu bLiTyK0t4HRqukEjDJVNIpOFY6tKTkEhdqGnfpvZIpIRP/g94FhLPq4wS8ku0H6uxW1QtkVKy4l7z0us5Hq9iyMwr/iIMyecIgv085fOzys8vTOF9UAgfk7IpkHzRDIpS fj6I4lZ VTsVUJOUgSh/j54 wXL2xdKpFV0UPWkP1U9WUytLgEhkdUlJZYzNQJCIg2XESGRhmO pS09CInWhpn2b2iCR0swEYpNTebprKt f8eRkRCqvopPJLyjSfsBGbFG1RBbz9vJKJtn3oEHfz6Lpn8Cj4 nIfrWJqaNHIjtwrOExWYqIywk7tFeXMfNZOfDdyRVbATSAuIe7 2fhnK3cfP2J7NI pVm8/ 0Um1wnM37cWEaPGsX42Ws48egdqblVmeiXQIREfslEqylCIrXC JRY2IQJCIg2XDCGRhmOpS09CInWhpn2b2iCR2YFX2LFuFVP6Wd LVYRLDXV2Zvv48EXHp2g/YiC2qlsgi/LYPxbLen/nf/9aVFbdek1RQLghJDFfm9aLpf/wv/m/fjfiEp8pnFsU/Yde4jvzjLy2Y9KM/MTmllghIc4j2PMdKhzb8vdFI9np JENemS2k8MN11jj2po TC vdjnB033qmD7Km66hN3ApLIq9cN WiqPCrkMgKOLT/Q0ik9sxEC9MgICTScHkQEmk4lrr0JCRSF2rat6kNEpkX5c31Pb Po16Yh3zbpRuNeM/j yEMSPudqP2Ajtvg9iWzVpi0W/6iP7fo7vEkuVEUhib2G66D dGz0Z/7bdpNCIos 8XTPFIb1acc//60108pLZFE8Pu47cXGypb9VA/69gWOZREoiiTzvTDdrB9bdCCIpXwLFmby7OI/uloP4/lYoCQWaLVJIpCo9uv0iJFI3bqLVH09ASKThciAk0nAsdelJSKQ u1LRvUxskEmkmgadcmTB9HuNsh2HXbyZHn0XwuVCzEGlPRPcWv yeRrbuOYepgS9qO3My9sBQUGikh7qf52DrMYVy3 pgNl0lkAgnP9jLV/ju XzuJbs26MutsuUpkjg8nVy5g0doDHFs FIs248oksiSRxJfunL7wC28SM5XXSUrJebKeQZa9cLkSSFzl0 JVDFdIZBVQtJkkJFIbWmJZUyIgJNJw2RASaTiWuvQkJFIXatq3 qR0SmUPY7dNcfvYK7xsnublnLw9D48ksqkUS2W0GblvG063LaL Y fEuq7HJOSTw3FtoxYsURVg5vjYX9Jjye3mD/tGGMXnGO5/e34NCuJ7PLS2RhHKF IUQkZRJ1bgadOowvk0hl qUlUihFUxDLL uH067jRPY//0hGNS6LFBKp/X5UoYWQyAo4xB 1iICQSMMlS0ik4Vjq0pOQSF2oad mVkik7DLA/DzyJRIkBXkU5GRTJJGoPEn7URunxe9WIrvN5My9I8zt15WxO38 jPK0IyadbLLZzYMXlh yZ1ImWw5ew29WRYaOWcsYjmtTA/ThVlkhV6CXEX6haIlWLFKUQ5L4OR5vOOKy8TMCnHKrhkAiJVBH U7RchkbpxE63 eAJCIg2XAyGRhmOpS09CInWhpn2b2iKR2o s5ltoksizfr5cWtSPbuP38Ph9KrE/L2Www/dcfhnI6VnWWHTvQScrOxadfE5URiFFoQd0lkhp/if8rmxmYt9u2M7Ywe2QJHIqPgdILSAhkWrRVG GkMjqcRJLmR4BIZGGy4mQSMOx1KUnIZG6UNO jZBI7Zmpa6FRIv0j XB9AX26O7P/iScXlgzBfvkl/KMjuTy7E80a/5n//bc22E6YzcJly1k6tT8tvqlHu8GTWHLiOdFpeeWqr orkdKcSJ6eXsmYPj0ZNns71wPiydbi lEhkeoyXM3pQiKrCUosZnIEhEQaLiVCIg3HUpeehETqQk37NkI itWemroVmiYwhS3Y3du eTPlhLWN6DmXZxZfEZiXiPqsTzS1b03 IA2PGjJG/Rg/uSIN//4ZmXQYxfutd3iXmapbIogR8zizHsVdvHBfu566sAqnltaNCItV luJrThURWE5RYzOQICIk0XEqERBqOpS49CYnUhZr2bYREas9MX YvqSGRucQxX5vaie7c2NLJ25cLLGHIkybjPtsZioAsX77wgNDR U/gq tYpB5h0Zs8WdJ Gp5BWWv6KxikpkSQopHnuY2r0l7YfMZZf7Y7wDggkODib4VRjR abkUVuObfoREqstwNacLiawmKLGYyREQEmm4lAiJNBxLXXoSEq kLNe3bCInUnpm6FtWSSGkxURdn073JN1hMPo1fTDYlJcm4z7Gm pb3yOZHKFWh7TWRJ0j3uLepMs//8V75t051 tkMZOlT5Gj6FnQ/CSarG08aFRKrLcDWnC4msJiixmMkREBJpuJQIiTQcS116EhKpC zXt2wiJ1J6ZuhZVS6SEBJ9rnDr/gNDELGRP9imO9cT9xGEuPY8kLbcEpLm8fXiWk9c9 ZSWp q JCWAm6cv8jA0kcwvvuFRSvabB5z98Wf849ORPUNcmhZE4E HOLhzK1u2bKn42naQW4GfyKjGtZFCIlUp0O0XIZG6cROt/ngCQiINlwMhkYZjqUtPQiJ1oaZ9GyGR2jNT16JqiVS3tOlOFxK pZ26EROoJUDT/wwgIiTQceiGRhmOpS09CInWhpn0bIZHaM1PXQkikOjJf2XQhkV 9ZwuvQcIVEGi6ZQiINx1KXnoRE6kJN zZCIrVnpq6FkEh1ZL6y6UIiv7KE16HhCok0XDKFRBqOpS49CYn UhZr2bYREas9MXQshkerIfGXThUR ZQmvQ8MVEmm4ZAqJNBxLXXoSEqkLNe3bCInUnpm6FkIi1ZGpYv qOHTtYtmyZ/JWSklLFErV3kpBI4 Zu165dqm0nMTHRuCszYO 7d 82 biFRBou4aYmkXv37lVtf/Hx8YYbqIn2JCSyZhJTWyXywIEDqv0hOjq6ZmBpWIuQSA2Ays82 MzPjT3/6k/wVHh5eflat/11IpHFTaG5urtp2ZA9VrS0/FhYWqrhDQkJMMmwhkYZLi6lJZNu2bVXbn7 /v EGaqI9CYmsmcTUVons1KmTan/w8vKqGVga1iIkUgOg8rOFRJan8cf83rx5c9VO9ObNmz8mCB3WK iRSB2jVbCIkspqgqrGYkMhqQDLiIkIijQi3XNdCIsvB0PNXIZF aABQSqQUsIy0qJNJIYNV0KyqRasBomNyqVSvVh52goCANS5vOb CGRf2wuhETWDH8hkYbjLCRSC5ZCIrWAZaRFhUQaCayaboVEqgG jYbKQSA2AqjlbnM6uJigTWczKykr14cnX19dEovoyDCGRXzLRd YqQSC3ICYnUApaRFhUSaSSwaroVEqkGjIbJQiI1AKrmbCGR1QR lIosJiTRuIsQ1kcbjWyPfWCMk0ngJrG7PQiKrS8owywmJ1I2jk EjduFVuJSSyMhHT/ltIpHHzIyTSeHyFROrJVtydrSdADc3FjTUaAOkxW9xYowe8Sk3 FNZGVgNTwn KayJoBLk5nG46zOJ2tBUtRidQClpEWFZVII4FV062oRKoBo2Gy qERqAFTN2aISWU1QJrKYqEQaNxGiEmk8vqISqSdbUYnUE6CG5q ISqQGQHrNFJVIPeJWaikpkJSA1/KeoRNYMcFGJNBxnUYnUgqWoRGoBy0iLikqkkcCq6VZUItWA0TB ZVCI1AKrmbFGJrCYoE1lMVCKNmwhRiTQeX1GJ1JOtqETqCVBDc 1GJ1ABIj9miEqkHvEpNRSWyEpAa/lNUImsGuKhEGo6zqERqwVJUIrWAZaRFRSXSSGDVdCsqkWrAaJg sKpEaAFVztqhEVhOUiSwmKpHGTYSoRBqPr6hE6slWVCL1BKihu ahEagCkx2xRidQDXqWmohJZCUgN/ykqkTUDXFQiDcdZVCK1YCkqkVrAMtKiohJpJLBquhWVSDVgNEw WlUgNgKo5W1QiqwnKRBYTlUjjJkJUIo3HV 9KpDQnjtcvvfF88YIXL17g4eGBp5cP/qERJOcUUyIFU5RIaW48b176qOJ 8cIDDw9PvP2CCItJI6 4BKmSuyQnkY h/vj6BvA6WjGvNCV/dCVSPg7/snHI Xv7ERQWQ1qegr8sVsNKpJTc Df4 3jKcy7L wsPDzw8vfELDCMmLY9iWeIr/BSR8iGUiJQ8CiUVZvzuH4atRMriDtMybihK cDriBRytQhcZ4mU5vIpzB8fT8X pNqnvH0JDIsmLbcspypwRSl8eB1JSm4hWqClepVIKbmfwgioIt e gWFEp VWkWsls0jtmMnGU5MSKc39xNsA3y PAb6BvIlOJbeo7BhQyroo9SOvI5PJqbQtVKsSKcvt2wB8q8rtm 2hSc4vkx8vSdSn LyL14xsik3MoUCZXkvaRqNQ81d8Vl1f8ZQoSWZmv4tjkS6DasY KM7xsZ37LB8jE4kPD4bAqKqxqpYppxKpFSchPeEujriYfy/a30OOcb Ibo1ByKJF8e51IjZPnKLsuPJI0I5Rjy1YxBP4mUkpcQrjbOqGr GKUmL4FVQOPFZ agJE8NWIkvj9irjW/o LNsHo1LIKZKo3odlmS5OjSAsMpns/LIjXUTIa8LjslDHVtZOG4kMDg5Wva VbbNRpOQU8kW6FUERERZJcna 8vgrIS3iFUHhcWT9TlCiEqnYd5F8uMyysQ4MGTKM4cPtsbe3x0 H2GjWBOWuO8kv4Z75t2ET1vaDh4eHKln/sf5KIq6wcP4Ihg4cxTBm3LPbhw xxmrSAbVf8iM8uIOPdL5zY6MpU54lMHPcdY6csZOslb2KzCikB/miJlEReY9WESuMYPgx7p0ks2HoZ3/gsCksMLZESIq tZuLIIQweNozh9oq829sPZ5i9E5MWbOWyTxxZshXLf6QUxD7Cz XUWux5GkZZf cCrflswrERKiPxpNc4jh6qN 5JPbLm4QVoQy6O985m96yGRqXkVDmjqowadJVISyU9rJ E4dDDDhg2X70 y7dJenlNn5m 5hHdsJgUqtAXEPt7L/Nm7eBCRSl710VZTIkuIvL6WSY5VM3Oev4VL3rFkqgKSMYvj8b4 FzNn1QP6hQYuQalQiS6JusG7yKIZWdQxwns Wi17EZBbI93NZruXj2r QOTvv8yG54rZQLYksieLG imMGjqYoZVzO8qZ T9cxCs6oyy3SCmIe8L hXPZee8Dycrk5rzYx/Gn0STmqCdrChJZEnWTDVOdGDp4aNkxVrYdy8d6Ac/oDPJLt2Ml3ycHFjF3513eJ Uq9rWcF yfM41NV9 SkK1 vMaRyBKibm5kmtNQBg tfJwbhbPrD1zwiCJdNQhZvp5ycPE8dt4JJzFXGW uBwfmTmeTexif1IxBP4ksIfrWJqaPHqYmzs2crxxn/FMOLakYZ67HQeZN34T7m0 oCdPAEimLe7M87kF2X74Pj5royubzL4j8nK/cB6U8O7Ial50/E5aQozoWH1qwjI1XXhOfpX770EYiXRYsrmL/nIjr5nO8iPhcYZtFWkD8s8MsddnJz2EJKHbJXDwPuTJz42VC47 JUcVZ vxASqSRSFLiVfg3q0em779mwbTd79uxh967trF/gSKdmlgxacYN/ c9vTU8iX 3ErtG3WDkuY/1WRdx7du9i 4bFjO/enCbWkzjy/BmnF9jRpYcT8zfs4cCB7Xw/riftbMbj9iSWzELpHy Rr3YxuEk9rEYuZZ18HLvZtWMDiyf0oEUTa5wPexGfVUSz5s1VO Xjz5k3l7VnLvyWE7B5Ck3pWjFy6jq279yjzvoMNiyfQo0UTrJ0 P4RWfRZFUSk7UC35cPgTzvzbkuxOhfPqdN7/KgRhaIkP2DMWsnhUjlqxjyxdxm2E98SAecZkUSUGaE4XH2e8Za vFXGo45zqv4bLUHhMpx6y6RIbgNa0Z9qxEsXruF3XtkbEtz2hN zM2smHvAgNrMIqTSHKI zrBhqwX83HMOxV3FqD/6V45P9Xb1KpIRQt E0a2CFw K1FZktmUhPcxmzA7yIKWUWjcfZFQxr d80HH2M4LjqM5PFVJOVSEnoXhxaNMTKYRFrtpQdA3ZsWMLEXhY 0tZ7A/ufRZBRJkeZE43luJcMtv6HR6CMExlZ8c6iWREpC2TfCnIZW9ix c80OF3C6Z2AuLptZM2PeM6IxCpEjJifbk3MrhWH7TCKcjAcQo3 yQzrs1m6ZXXRKWXM7BKCTYFiZS83s9Ii0ZYDV/A6h9kfGXb8UaWOPemZVNrxu99SlS6bKyyfS0ar/OrsG/1Nxo5HeJldKZiX8v4iTlWLRm104eI3xmvcSRSwuv9jrRsZMXwB av5odzxYuMSZ3pbNqPTODceR36mUHaci/HiwmoHWv 9EaMO hGVqZSajOvM62jJqB3efPxcdc70k0gJrw840aqxFcPmr2Jz TiXOtNHHuceHkeUi3PNCNrI4jzgS6QyzozrLnRqNYrtXh9QE6a BJVLC64OKuC3sl7Nqc7l9cONSJvVpRfNOY9n920c F5aQG ONc09LGjnuxzsiQ/XhzrVbP0Zt8 B9WtVsZbuGNhLZa/JmXFZuLrd/bmTppL60at6Jsbt 40OaYptFmkuM90XWjmzLPxo7ss/rIxnyEDK4Mb8LrUdt5cW7NFWclXZRhEQqicglsmELJpx5S1LpJ y gMDWII Ms WfbOfyP//VvKoExmUqkXCLNGH34dcVPuEXphLvPxfofDRmxbgl9zVrhsO1X 3qfLKo/FpIceZ0LrJthuekZ0erGJSGRTRh8MKfcpt4j08KvM6/JPGo48QGB8Fk2NIZFNnTj4Kp7yHwCL0t9x1aUL3zYawYHAKMI8 L7NjriMD 7Tl2z/Xr0IipRR8juVtkC eHp74hURWOK1nFIls6sSB4Lgv43a1oV6jEezzjyMtxpsrO bhOLAPbb/9M/W/kMjfj1tfiWzmtJ gWOUbqXxfKyL93TXmd61PoxH7eBkRhueVnbiMGkiftvX4c/0xHAuuKJG/x1XWpVYS2XwU wJjKX1flLWX5fra/G7Ub zAXr8YUmN8uLLThVED 9CunozZ0UoSKaUgPZZwZa59X1XMtazPmpfI5oza6090Zrk3oKI M3v 0gB4NGuPg5sOHN16473LFaVBf2tX7C/X1lITLchAAABy3SURBVMgWo9x4GV32JghFZLz/iYU9GtLYYQ8 USnE rqzy9WJQX3bUe8v9Rl9uLJEBhEc8poAX1 C3ieSVVjxtJ/pSKQ5jnt8iVK8u8q2GjLeX2dRr0Y0sd NV2Q6BfG XN09n9G2Mr7/Sv0qJfIFgb8zXqNKpLkju30iKe wRRkfuLG4N42b2LPTI5zX3tfYs2A0tn3bUf9f6zPqQBUSuf0ZA SFvCJTnLKFCzgwikRaO7PKO DLOJX1oYjacnS9K4xyjjLNB1RL5NICQN4H4 QbxPiGTgnLncA17OlspkRaODHYLqyjYRRl8uLmUvmZmDN/ iOcP3XFbOIbuTf DBo77vpTIrU/wf/WGQD8/gt4lkFlQXOEDvzYSOWjjczw fC4nf0VkfLjJsn5NMRu nWfvPyMp/sTLn9xYOMaOfu3r828NHNlbhUQ fvmKN4FAW9IyGzgOJyxVIhkfI3NlAnkVCI59ru1G88iv/xP/9v7ZFIWQXAcx196n/L4NWH2b7lJA/ffyZPeQmGNPsXlnRuSPelD4hIK6Rps2aqsYWFhSmp1Nx/EnklsrJEyj7Ze7G X0O HbIT/7jMGpNIpDl4behPo3qD2eEfxr3985nlspr9xxbTv4E5E0 Wr0QW8cnnCruWz2bKZGcmjHPC0WkSC3fdIjQlV77D1ZREyuPe2 J/G9Qaz3S GuOeHWDDLhVX7j7J4QEMsJpSvRCri3r18DlMrxR2ijNvwEinLq TebBjah/uBt L65y4GFs3FZtZ jiwfQyGJCRYks sSBjcsqxrfzFiEpOaoDmb4SKWPmvWkQZvUHs80nmrgXh1k424V V 2TMGmMxoXwlsohPvu7s b6U2WgcnZxZsPMmr5Jz5JVfk5FI2THAZzO2TRtgt8WL0LuHWDx HOa6BTWg5Xr9K5JcSKcutDz/YNaOB3RY8I2N5cXQxc1xWsffIEgaZtWR8pUrkpGUrmTltGs5jn XCaMI8NPz4nMr30miwwXYmUjdWXLUOa09DuBzw ppHpfYwlc11YufcISwY1xXJ85UpkC3p/56oa72jZeM88xz0wlc/Ka NqWiJl277v1qGYN7Jl0/Ng7h5ZxjzXlbgdXoJts1aM 6ISaU7vMS7MnDZdnrPRE ay4cwzPn5W5MxYEimPc9swRZzPgirEade8FeMqVyItejPGZQbT pjszdvRoJsxdz5mnH/msfAOsMYlESq7fduxbNsZ2wx3ObVuCi sK5vZsROtxlSuRvek9eh4z5GxHI2O7/vRTPqTlqa4R108iQZrrxw6HljS23cDj8BQkOT6c N4F1xV7OLxkMC1aj/uiEtmy92jmzpjGdOexjB49gbnrT/PkfZrKJYRE/p5ESgtJj3jKdofm1OuyhP/nf/ HSrRMqxLZkL4LT3Pt7iMeP37M40e/cv/GWXZMsaFJi8Fs/jWajHxJuU8kBUTf/55 zdsx VQQCTklJlKJbEjfBSe5Kh/HI369f5OzO6bS1cwcu00P5aeMjHI6u1FfFpx0586jx3J j369z82zO5jazQxzu008iEzknb8HgREpZEeeYKx5K5zLSaQ06y WHnLvTedB0Vu04yNGj 9k4pQfNWgxj6 Mo0oukGEUiG/Vl/onKce9kWremmNtt5H7EZzKjAvAIjCA5O5KT41vS2rlMIqXZ/hye1IPOg6axcntZ3M3Nh7HlURTphVI9rolUnM5u3NeV41fu8Ei 2XT5W5PTczml0b2aB3YZ7RCS8w98jkIjkbCJPjseyzUSOqyqRU rL9DzNk4hJWbj g4Dq1J/L4fovkc6Hi47BWEtm4D67HrlTM9bmdTO/RDAu79dyTyUAps6xITk2wpM3EMomUMTsyuRddBk1jxbaymFqYD OHXyNUMdV8JbIJfVyOcvnncseAm fYOb0HzS1sWXfnA5/eBeAZ9JHkrEhOO7em7UT9JNKszzyOXPq5Ym53zaBn85bYrrvD 9RMogI9CfqYRFbkaZzbtGViJYns2c OUS4b2bV3F6sm9cHKZizbH34krUCRW9ORSDP6zD3MxZ9/K9uOd82gV4uW2K69zbuUfApiAvEK khSZiRnJrej3YTKEtmIhs2746gab1862HxH27GHuP8 Fdkl1kaVyKZ9mHvoIrd/K3ecO7 Lmb3NaTloDbfexvEu0Iugj4lkRv7IlPbtmfCFRDahkWwM8zawc 8uVk/uR0eb79h67z2p VIMIpHN jDn4IVKce5mZm8LLAet5ubb2ApxTrVqz4TKEtmkEc27jWTehp3 s3bWayf06YvPdVu6 S5FzNopENutNl3lnOH9bto0o3ocf3DzP7ll9sLAcxKobQbz09i LoQyJHnW2wmlBZIm1o1LwbI euZ6fbLlZP6U9HmzFsuRNOivL6e20kst/8M w/f4vfSo 9D25yfvcs ra0ZNCq67xJykNaGEOwdxAfEjOIPDudTh3GV5LIzjRt1IxuI eyfqcbu1ZPoX nrozZcoe3KfnyKqmQyPIS2eBb2tnPY8mqdaxfv551q5fjMr4/bVtY892O3/jzf9czUYn8Gw3b9mHg4GEMte1P757d6NarL/3tRuO65y5hsruMVUXFIpIDLrFyaHusHNZx622a/ALbP/zGGnklUjaO3gywG0b/Pr3o1q0XffvbMdp1N3feyO4mN/yNNfJrIv/ekLa9B2A3bCi2/fvQs1s3evXtj91oF3bfeU2qbMXKH0nsqS8lMt2HU2tWsPvWG5J zZafjpGR4b2RgE0smnlJULI0ikVXF3UcR966fX5OSW 5USEkcpytLZLoPp9fK4n5NUo5sWSmZ3psYJItbKcn6ViL/0bANvfrbMWyoLf379KR7t170keXUZRe3Q1PIVZ0XKSHu9IQvJD Ld5wynn7wri09WWTNrxcQTIcQrr0nVSiL/2ZA2vfqX5bp7N3rJmDm5sOt26BfMzlSWyHRfzqxbye6boSSWMv P5gcHNWjHheDBxyiv5a14iv6Vhm570t5MdAwbQp2d3uvXqQ387 J bJKrfJZZVbSuL40QAS W3D1vRU5nZAudw6zdvJrVfJ5KhyCyVxPzKpCokcvuAoD99 pqBEQmb4JeZ1s6DP8lu8TVa8QZmORNajYese9LMbxoA vVTbsdO8HdwMTiJHdvFx6U9JPGerlMgmtB25g/thnymQyMZ7GZfuLWnyH51Ydv0NiflS40pkvYa07tFPse0P6ENP 1bY/lx03gknMLlKdOi2JP8fUqiSygxltR2zn3ps05Riu4NrDkj5Lr/M2Md8wElm/Ea169MNWdjyuFOf2G0FfxlmFRHZs2o4R2 /yOi0fiSSTd1fm09OyD0uuhZCQJzXONZENGvG31n3oZ1tpH7R1Y u726wQmZKvOVJyf3u1LiezajXYOW7kTmkq bPt4586CXq3os QqIQmKG C0kchuw6fRva t/Nhbts3a4jR3Gz8FJpBVfpulhPgLM6qUyGbtHNj6cyip RIkme9wX9ib1n0Wc/XVJ/kNkEIilTu 4saav9HEehBDHBxxdHTEcdRoxk11ZfXeq/jGZlO/sZmJSuS3dHD6no073HDbsZ55w9vx7T8sGbrqKq S8lSn/ZDmE 9zgXXfdafzwJnsefCOdOVpFNOQyHp0GLWcjdvdWO/iQLt6/8Ry6Ercg5NUsmHYR/yU3ljTgVHLN7DdzY0d6 dh374e/7QcwoorwSSWFzGgKomkOIfE1578evcGl86e4NCeraydZ4fFf9V n1OFXxGcbqRJZvwOOy0rjdsFBFXcQCZXilolDZYlUxX1PGbfbN ta6yOJuwKhDwcRl6V JbNDBkaXrt HmtkOeU6v632I55HsuByZUkAyoSiKhODeRJ7/dU3AtH99BRXyy3VcriWzQgZFL17NNlusNLjhY1edby8EsvxRAg lwKS00AmflQWSIpziXxtRe/3rvBZVmu5TENpuVfG B4IJAY5cWWNS RDekwYgnrtsmOARtwGdGBBt 2ZPDyi/h/KieQsuEZSCIbdhjB4nWy3O5kg sIOjT4lpZ2y7jgH092OYFUrLJqiVz50yuiS68zLEng/JQ2mDvuwjdKca2l6UhkIzo4LGLtVjc2uDrSsWE9Wtot5fzLeLI rvBnL KqRyA7tGevmTWS58V6Y2o6h//6vOO7wkt9wY9RKZOMOOCxay1Y3N3ZucGVkx4bUa2nLknN xGWVCaQ8X okspMVY3d7EpGuvC6qJJGL061o6biDgI fDSORja2wX7imLM5OjRRxnvUltqo4q5BIa6ux7PaIoCzMi0y3a onjNg8 fC4xjkQ2saLliJWs2eqG284NzHfsROP6LRm0 Ed8YmQ3Z5YdW6qUyG52fLfzOR8 l7G9NLMjliO38eK94sYWbSSy95QtzF 9RbF/znfEunF9Wg5axI/eMWSWD0YeljqJ7ELH73by7MNn5Sn1EhIvzaKT5Ui2Pn P7B4gIZHKvCok0oyhm27yyDuQoCDZBd9veBeTSo7yOWum JxISeUba6QFJPpfZMkAS1oPcOW0b4LiU7I0h4jHx1k6sjtdh85 l98 hpOSVVapMQyLLroksSAzg0tKBtGo9AJdTPnxSfko2ikSWu7FGW pBIwKWlDGrdmgEuJ/GOL/v0KNtUqpJIaforrv4wh3Gjv2P8xMlMnT6LeTPtaPlfDXA6ZESJ LHdjjTzuy8sY1LoNA adxCuu4kGrKomUpodwbctcxlcRt6EksuzGGikFiYFcXm5LmzYD mHfCq9IbV1USKSU95BpzZkwvx3Uwln9twKiDQXLJleVEK4ksd2 ONtCCJwCvLsWvbhgFzj MZ yWzyhIpZ7Z1HhPGlM 1MqYDAX gRJa7sUZaQFLgFb4f3I62/edwzCNG/gQG5aHOYBJZdk2klIKkINxXDKFd2/7MOfaCmEzlnZ/KlaqrRG5 EEZs6XNYpJn8NKcdTe234B2huCHAdCSy7MYa VhXDqV9u/7MPvJceRe6iq56iezYhenHA4gpN97rc60Y/Z//B/vNnnxIKzFuJbLcjTWybT/o6iqGWbWj/6zDPIvKQHl1iHwgaiuRnWyYduwl0aV3IUozuTGvIy3sN P/Ic0wElnuxhpZnMHXVjO8gyLOp1XFWZVE2kzjqF U6qZDaeYNXDq1wH7jc96lGkkiy99YIy0gOfgaa w70r7/TA49iSRdeYmGDHCVEtndgWlHyu4yR5rJTdfOmNtv5Nm7VPnlaN pIZNmNNVIKkoP5aY09Hdv3Y bBJ0SkF6iqzootV51E2tB12mF8IktvjpSSeXM XSzs2fA0nBQhkWU7vvoba8qWqRUSKQtXmsv7n2R3ZDem6 wz CdmEOt5nAVDbejuuJjDv4TLL Qu98HIRK6JLJNIZBckv7/O0n5NaWwzi9MvZZUrI53OLieRCnzvub60P00b2zDr1MsKFaovJ VJKxuN19De3YsTqw1x58By/kA9EPtvEwCbNGC2TyCwjVSLLSaQi7g/cWDaAZk1smHnSl0/ZZR8SvpRIWdwbGGDRgRGrDnFZFfdmBpk1w0lZ6dP3dHaZRMojJ PfDTZYPbE4Tmxmc8C1fsapCIqUZPNkwkDk7DlSIz1YW34EgYpV vZLpKZCmzm98PooWZDTNO BBfiVlFiZSS8WQjg1p2wGHlQS7df47fq/dEPvsBu2bNcdpvIhKpGBgfbq3A1twMm nH8S7/ocJAlcgyiVTkNu/jLVbYmWNmM51jXrEVTpepk8i5p7z4kFYk6wBpXjC77VvSYeoZg uMUz88zRYmUHZvyPt5m1WALmspkxbNSZUddJdKqJUPW/8K71NLxvmLPCEs6/6UBU08GymXaqJXIchKp4P2Rn1cPwbKpDVMPvyBa9rgteSZkHqz mdHZHS4asfUh4StkY3Ea2ptOUk7yKyTa4RJbFORTLZl0UcWZUi rMKiezUaghrH7xFEaaUvFd7cWzTiSnHFQJslGsiy0ukInAi7qx hWKtmdJlySC7qpQXAKiWyWz GrLlHWHKhPAvSvBD2ObWl05RjvIxSPIpLN4mUB0NexB3WDm9N8 y6TOfgsUv7IL/mK5P ok8gutB6ymntvkpFHJc0jZJ8T7awnc0wp6aISqaRYpyRSdkDOf sP52TY0aNyLJadPs2pEO5q0HcaiQ7fx9A8mNDSU0NDXhMdnUlB sKs JLC R8kHw5sIcujVsQq8l7oSk5GFWI4/4kZL95gJzuzWiSa8lXAlJUd2JVpVEprjPoHUDa6adfsab2E9Ev 37Bpe9tafqf3zBsr6xiVmKcG2sqSaTszS37zUXmdm EWa/FXA5OJrf0CxG OJ0tJeXqTNo2tGbqqSe8lsX95gWXVtjR7D//xrC9gcRmluh9Y01FiVTkNOyiCz0am9Fz0SWCk3JVp0m uCZSmsLVWe1Yffk oar4BtPsv/7GULcAeXyy3VcfiZQzC7uES88mmPVcxKWgpArMKktkytXZtGtk zdQTjwmNkTHz4PLKITT/698Yuuel6tRszZ/OLleJVB7TpNlhXJ7fCzOzniy8EEhiTulpMsNcE1lRIhW5fXt5P r3NmtJzwQUCEnJUd5Wqk8i o5ey75YPr8OCeHRmIf3b2DD9uA xWYpYTVMiZWPN4e2VBfRp2pSe88/hX26sak9nWzXCrOtM9t70lo/38Y LGNDGhn 2msFRrxgyi418Y00liZRt zlv3VnUrxlNe7hy1u8T2crLv9VKZIfGmNnMwO2Gl3IMixnYtiv TjngRm1lsFImUxxkui7M5zXq48qOf7MOnYiOXx1mFRHZs3BSbG Xu47hVKWNBjzi4eRLuu0zjsEUVGMcY5nV1ZIuWbSThXFw gRbMeuJzxIU4ZeJUS2dWGpl2ms/snT0LDgnhydgm27bsy9dALomRBa/mcyLJKZOkBIYfwq0sYYN6MHvNO4xOXVe5eCXUS2Rmzpl2Ytusn PEPDCHpyliV27ek69RAvIjPk7YVEKvnWNYmU7XifXx5mQvtvad alA3////4Pf2lkzYDBw3EYMYIR8pcjsw6 ID7DhB/x89mfIxOtqNdiMBvuvuObhk1V16Ua7GHjlSqR8k1Cmo7/EWc61G/B4PV3CE9TfOPHlxIJBeHuLHPoSQ87JybNmMu8ubOZPms8vRp/Q 81j4hIK6KFubkqbpnA6/cjQf6w8S8kUnbUSsf/6CQ6NmiB3bqfeZum/JaELyRSEffyEb3oYSuLe065uP9G79W/8TGtCHMLC1XcISEh1Q9borg7 wuJlIcYwLHJnWjQwo51t8NIlX9TRhWVSAp4d3U5I8ZOxPmL H7lg7Kio59EKpgFHJuCdcMW2K29RVhqGbOKEgkF767yvaOM2Sh VTDNmjad3k7/Ta9VD3isrNKYgkbJjQHrgcaZ2boS57RpuvkkhT/YYSaNUIhWbhjQ9kBPTutDI3JbVN16TIl hbJVVXxM5esIoHMY64zzeiSF9 zB87gF1D2bRomK5HyzSaQE9NtaGxuy6rroSQrx6pWIju0xrrX4 Erj3Y/rKX/eK/fTmqxEyjMmTSfo5Ay6NjFn0Mqf5NfQy/RdrUR2akPnXnbyMUwcP1qRszn7 OVdqnzbMsjd2eVOZ6sOOLI4T82km5kFg1Ze45Xyw6c6ibRu25m edg6MdZ7I NFD6dtnOHP2PSQ8NU9 WrhGKpEKwGQEnWZW96ZYDFzB1eBE YfUKiWy20A697TDfqwzMrZD /Vh Oy9PAhX7rf6SqRsm80I5vTsHjS1GMj37kEkllUZ1NxY04V2nXt gaz8W54njGT20H32Hz2bv/bekKB XJCRSuZVKEjw4t/cgN4Jl10CWFvVVm7D8F1M8nV2S5MXFffu59jKZ7PIXtcgiliTi fWkfO7ZtYcP6Daxft451FV4b2HsrlNSc4j/8OZElSd5c3HeAa35JlcYhIcnnMgd27uGCVyz/MKhElpDkfYn9B67hl5RV4ZogOb4kH64c2MmeC7JP2QqJlGYGcf 3QEW4GJpddUF SyYfnP3HSbRubN29l9 GLPAgI5OHpfZy8Hybna9i7s6sR90FZ3J7EZCi/7k6aRdCNwxy5GUBSlvJ6NVncL65zcm9p3Bd44B/IwzP7OFUat64SWZKEz UDHLjmS2Jm5etvJCT5unNQllNP2eOnZGYjJSvoBoeP3CSgXC5K Mj9w/tg fti8lV2HZfEF8PDMfk7df0OK7PqGalciS0iWbUcHruEre/BwpV1ckuSL 8FdcmbR6UqJlGYRfOMwR28GkFiJ2am921Qx3VfF9JoUZaWhJiW yJNmHKwcPctXnExlfDgy/q4fYtec8HlHpiq86k43r5hGO3vQnodK1i9X6xpqSZHzdD3Hwqg fMr7MbbLfVQ7v2iP/irrPyq/Sk2YFc voUW76J6iuz8wPu8tj719xP3WAHVu2sfvYVZ7LZKTcTTmmIJEl yb64HzrIVe94Mip81amEZL9rHN7txvkXkXwulUhpFq9uHeXYjZ dlfArCuHfiNDce3sf91MFy400hNk quunCOBJZQrLvVQ4fuop3fLr8ETfyHUf5jyT5JT8d2Y3b edEpCkkS5r1itvHjnHDL75smyp4y/0Tp7n 4D7upw yU5azo 48C08hV/meqZ9Elih4HrqKV5y6OPfgdq5SnMcVcZZec1jw9j4nT1/nwX13Th/cyZZtuznq/ozwlFwVZ8NKZAkpftc4cugqF31S FxhG5G9Dyfjf/0oe9zO8exjqvysVsjPpzl w5e4ctcmPjhzlev37 FhA7tyrYPn2bXMFHtDmdfeFZNLGfFU85KMu3hGT/6xzb48a5Zx9JVUmklKyQnzlx/Aa cZ Vx8cC3j44xZnr97nnfoZDO7eybfdR3JJTmn7JICIZFldDX ZooSqTHoai7wR99YU80wMeyNNdVdq/7LGVYi9Y nuj3ofE1kdVdggOWqV4k0wIq06KImJVKLsDQuWi2J1NiL4RYwB Yk03Gg092QcidS8XkMtoZ9EGioKzf0YViI1r89QS2gjkf9/e3aW2jAMRQG0S88eMk ryzzsoYV uMZQnD5ZqoPORyGO/WS9oxQu0lDv7BtHiOwTat0XIlsY//RRiCwLL0TGvIXImFu3Sojsioz7WojMuz5CZD7fj3xD/4wsRP5Y/NcnIbKsvBAZ8xYiY27dKiGyKzLuayEy7/oIkfl8hchEW8fZiYA95Y6ze4ASbjvOTsDrlDrO7oAUvnScXQbc cfZwzo6z/2BpJ/IPWJketROZCfaXYe1E/gLT87WdyB6gF2/biXwRaiSP2YnMuxB2IvP52olMtLUTmQjYU24nsgco4fZyufycT Cbff9frNWGk4UpXq9Xo5vRKd3YiX1HK98xms2l N6fTKd LMo283W7fYv673a6Z5/F4zKQx/LBjDJH7/b6xPBwOwzddaMQiIXI6nTZYz ezUGtlXjObzZreHo9HmZcG3jKfz99int3WFotFM /7/d69Pdrr9rxvt9to52liwwi0w /lchlm0IRR1ut1839zPp8TRlJK4P0F2uH3nQPbGFeiSIgcY PmRIAAAQIECBAgEBcQIuN2KgkQIECAAAEC1QoIkdUuvcYJECBA gAABAnEBITJup5IAAQIECBAgUK2AEFnt0mucAAECBAgQIBAXEC LjdioJECBAgAABAtUKCJHVLr3GCRAgQIAAAQJxASEybqeSAAEC BAgQIFCtgBBZ7dJrnAABAgQIECAQFxAi43YqCRAgQIAAAQLVCg iR1S69xgkQIECAAAECcQEhMm6nkgABAgQIECBQrYAQWe3Sa5wA AQIECBAgEBcQIuN2KgkQIECAAAEC1Qp8AR6GW0VUfFyeAAAAAE lFTkSuQmCC

Other than Underhill and Grugni, as you read in Wikipedia: https://en.wikipedia.org/wiki/Haplogroup_R1a According to Di Cristofaro et al. "All Iranian R1a individuals carried the M198 and M17 mutations except one individual in a sample of Iranians from Gilan (n=27), who was reported to belong to R1a-SRY1532.2(xM198, M17)." Malyarchuk et al. found R1a1-SRY10831.2 in 20.8% (16/77) of a sample of Persians collected in the provinces of Khorasan and Kerman in eastern Iran, ...

Do you really think all genetic studies regarding R1a in Iran are wrong? In fact they don't know that these are just Z95, not M198 and SRY1532.2!!

ratchet_fan
08-07-20, 14:20
Shahmiri: To be honest, 2 of the 3 components in Fatyanovo are southern in origin: CHG and Levantive. And we know that R1a1 is not original in WHG. R1a1 is obviously seeping through into the north along with these southern components, getting fixated for short periods but eventually being replaced by new waves. z93 in particular is an ephemeral phenomenon in the North and it tends to be a marker for turkic, scythic, or jewish origins; that is, for foreign origin. it is an odd dynamic but there are no real indications for the in situ genesis of R1a1 in the Northern Steppe. Much of it seems derived from elsewhere. Northern MtDNA U4, U5, and U2 are also very much derivative of the more prolific N and R lines in the South. The european steppe peoples are also very much Siberian in their basic genetics as well as culture and ethos similar to the Uralics, Mongols, Hunnics, and others who have moved freely through that territory for ages.

I can't believe how much misinformation is in this post.

1. There's no Levantine ancestry in Fataynovo. There's nothing to indicate the farmer ancestry isn't EEF like (ie. admixed with WHG).
2. CHG has plenty of northern ancestry itself.
3. Who cares if 2/3 components are southern? What matters is the proportions. EHG is probably still the dominant component.
4. Z93 originated in the North as did its brother clades under Z283. And Z645's brother clade CTS4385 also originated in the North
5. There's nothing southern about R1a. Saying that requires a lot of special pleading. We have P1* and R* in North Eurasia. As well as R1a and R1b in EHG. Yet no R1a and R1b in the South before the bronze age.
6. U2e, U4 and U5 may ultimately have a southern origin but these didn't exist in the South for most of their history. y I has a southern origin too but it developed and diversified in the North as did U2e, U4 and U5.

ratchet_fan
08-07-20, 14:22
No, because I believe Iran is the source, not the destination. It is actually what geneticists believe: https://en.wikipedia.org/wiki/Haplogroup_R1a

https://upload.wikimedia.org/wikipedia/commons/thumb/c/c4/R1a_origins_%28Underhill_2010%29_and_R1a1a_oldest_ expansion_and_highest_frequency_%282014%29.jpg/1024px-R1a_origins_%28Underhill_2010%29_and_R1a1a_oldest_ expansion_and_highest_frequency_%282014%29.jpg

According to "Ancient Migratory Events in the Middle East: New Clues from the Y-Chromosome Variation of Modern Iranians", by Grugni, et al.: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399854/



R1a-M417 is a subclade of R1a-M198, isn't it? Based on your chronology, would you please explain why all the R1a Y chromosomes in Iran belong to the M198* paragroup? Ok, R1a-M417 came from Central Asia, what about this chronological order:

Iran (M198) > Central Asia (M417) > Levant (M417)
Iran (M198) > Central Asia (M417) > Eastern Europe (M417/Z93) > Pakistan (M434)

All Iranian R1a does not belong to this paragroup. Its almost all under Z93. Can you stop using papers from 2012 and 2014? The structure of R1a has been worked out a lot since then and we have so much more ancient DNA since then.

ratchet_fan
08-07-20, 14:24
Well said, the steppe was the land of nomads, such as Turkic, Mongolic, Uralic and Hunnic people, not Hittites, Persians, Greeks, Romans, Indians and other major Indo-European people, of course there were some IE people like Scythians who migrated there and adopted a nomadic lifestyle, but the absolute majority of Indo-Europeans had an agricultural lifestyle. We see nothing in Greek, Indian and other Indo-European cultures which show they originally wandered in the steppe, the fact is that Indo-Europeans didn't migrate like nomads, but they conquered other lands and imposed their own culture on them. The main reason which could cause the migration of IE farmers was drought and famine which happened in the West Asia, especially Iran, several times.

What the hell do the Uralics have to do with the steppe?

ratchet_fan
08-07-20, 14:26
Other than Underhill and Grugni, as you read in Wikipedia: https://en.wikipedia.org/wiki/Haplogroup_R1a According to Di Cristofaro et al. "All Iranian R1a individuals carried the M198 and M17 mutations except one individual in a sample of Iranians from Gilan (n=27), who was reported to belong to R1a-SRY1532.2(xM198, M17)." Malyarchuk et al. found R1a1-SRY10831.2 in 20.8% (16/77) of a sample of Persians collected in the provinces of Khorasan and Kerman in eastern Iran, ...

Do you really think all genetic studies regarding R1a in Iran are wrong? In fact they don't know that these are just Z95, not M198 and SRY1532.2!!

And now you're using two papers from 2013.

Shahmiri
08-07-20, 15:37
All Iranian R1a does not belong to this paragroup. Its almost all under Z93. Can you stop using papers from 2012 and 2014? The structure of R1a has been worked out a lot since then and we have so much more ancient DNA since then.

Would you please inform me? What are new studies regarding Iranian R1a?

bicicleur
08-07-20, 17:34
Would you please inform me? What are new studies regarding Iranian R1a?

the one this thread is about
please read it before you comment

Shahmiri
08-07-20, 17:56
the one this thread is about
please read it before you comment

I see nothing about Iranian R1a (M198/M17) in this thread.

bicicleur
08-07-20, 20:49
I see nothing about Iranian R1a (M198/M17) in this thread.

indeed, so draw your conclusions

Ygorcs
08-07-20, 23:26
Well said, the steppe was the land of nomads, such as Turkic, Mongolic, Uralic and Hunnic people, not Hittites, Persians, Greeks, Romans, Indians and other major Indo-European people, of course there were some IE people like Scythians who migrated there and adopted a nomadic lifestyle, but the absolute majority of Indo-Europeans had an agricultural lifestyle. We see nothing in Greek, Indian and other Indo-European cultures which show they originally wandered in the steppe, the fact is that Indo-Europeans didn't migrate like nomads, but they conquered other lands and imposed their own culture on them. The main reason which could cause the migration of IE farmers was drought and famine which happened in the West Asia, especially Iran, several times.

More anachronistic views to reply to another anachronistic view. Between the PIE speakers and the Late Iron Age Turkic, Mongolic, Uralic and Hunnic people you're mentioning there's a very long gap of nearly 3,000 years. It's ridiculous to imagine nothing changed culturally and demographically in such a long time, particularly to people who emigrated in all directions and mixed heavily with already established societies. Besides, the steppe was the land of nomad PASTORALISTS, heavily relying on animal husbandry and on the horse, just like the roots of many IE cultural concepts that place a huge role and status on the ownership of livestock (to the point words related to money are even to this day derived from roots meaning "cattle") and of horses, especially horse mounting. Not to mention that they also worshipped horse and cattle gods and had as their original main deity a Sky God, as was typical of some other steppe semi-nomadic peoples. Nothing in IE cultures showing they originally wandered in the steppe? Ha, okay.

Ygorcs
08-07-20, 23:34
Other than Underhill and Grugni, as you read in Wikipedia: https://en.wikipedia.org/wiki/Haplogroup_R1a According to Di Cristofaro et al. "All Iranian R1a individuals carried the M198 and M17 mutations except one individual in a sample of Iranians from Gilan (n=27), who was reported to belong to R1a-SRY1532.2(xM198, M17)." Malyarchuk et al. found R1a1-SRY10831.2 in 20.8% (16/77) of a sample of Persians collected in the provinces of Khorasan and Kerman in eastern Iran, ...

Do you really think all genetic studies regarding R1a in Iran are wrong? In fact they don't know that these are just Z95, not M198 and SRY1532.2!!

You're clearly (again) having a hard time understanding what we are saying. R1a-M198/M17 (with a set of mutations linked to it, mainly M198 and M17) is just the upstream clade to R1a-M417, which is the upstream clade to several subclades like the one that clearly prevails the most among Indo-Iranian (including Iranian) people, which is Z93. When you belong to Z93, you also automatically belong to M17 and M198. Haplogroups are basically accumulated combinations of successive mutations. That has nothing to do with R1a-carrying male Iranians belonging to the basal forms of those haplogroups, mate. There's nothing "Iranian" about M198/M17, it's just that those studies didn't test their samples for the more recent and specific subclades of R1a, they just tested them to determine whether they belonged to the upstream M198/M17, which includes virtually 99% of all R1a carriers in the world today, or not. M198/M17 is basically what's present everywhere in the world where R1a has some non-negligible frequency. INTERPRET what you read before drawing conclusions, man.

What's so difficult about this basic phylogeny, huh?

walker89
09-07-20, 01:14
Your entire post is full of anachronism, a chronology that is totally upside down (R1a and Z93 in particular far predate Scythian, Jewish or Turkic presence in Europe or actually even Scythian, Jewish and Turkic cultures themselves, they are essentially LBA/IA phenomena).
“LBA/IA” is simply one instance when these genotypes were transferred to the West. The same phenomena was repeated at later times with Scythian/Turkics and the like. We know that the plethora of R lines do not originate in the West or Russia for that matter and there are multiple lines of evidence which lead to this conclusion. The west was sink for these lines however and thus can deceptively appear as a source.


Besides, what Levantine origin in Fatyanovo and other parts of Northern Europe? That just doesn't exist.
There is extra EEF in the Fatyanovo samples, EEF is essentially Levantine. Even if the migration took a circuitous route over many centuries, it still originated in the MidEast. The CHG (subsumed under “steppe”) and Levantine in Fatyanovo likely traveled together. At any rate, the steppe is an highly admixed region where almost all components have a prior history in the South.


And where is R1a anywhere in the ancient DNA samples from West/Southwest Asia from any time before the MLBA? Nowhere at least so far.
The Mideast including Iran are large ecosystems that can hold and produce many lines while Europe lies at the recipient end of this Souther diversity starting with the yDNA-G in EEF, and yDNA-I which orignated from IJ in Iran. There are R lines in the South like R2. Mal’ta has R* and MtDNA-U*. and we know that U had to originate in the South among the much larger southern diversity of N/R/U. This gives an indication of where the yDNA-R lines originated - not to far from where all other european sink diversity originated.

ratchet_fan
09-07-20, 02:17
You're clearly (again) having a hard time understanding what we are saying. R1a-M198/M17 (with a set of mutations linked to it, mainly M198 and M17) is just the upstream clade to R1a-M417, which is the upstream clade to several subclades like the one that clearly prevails the most among Indo-Iranian (including Iranian) people, which is Z93. When you belong to Z93, you also automatically belong to M17 and M198. Haplogroups are basically accumulated combinations of successive mutations. That has nothing to do with R1a-carrying male Iranians belonging to the basal forms of those haplogroups, mate. There's nothing "Iranian" about M198/M17, it's just that those studies didn't test their samples for the more recent and specific subclades of R1a, they just tested them to determine whether they belonged to the upstream M198/M17, which includes virtually 99% of all R1a carriers in the world today, or not. M198/M17 is basically what's present everywhere in the world where R1a has some non-negligible frequency. INTERPRET what you read before drawing conclusions, man.

What's so difficult about this basic phylogeny, huh?

On top of that Iranian R1a doesn't even belong to more basal Z93 clades which are mostly found in Europe.

ratchet_fan
09-07-20, 02:25
“LBA/IA” is simply one instance when these genotypes were transferred to the West. The same phenomena was repeated at later times with Scythian/Turkics and the like. We know that the plethora of R lines do not originate in the West or Russia for that matter and there are multiple lines of evidence which lead to this conclusion. The west was sink for these lines however and thus can deceptively appear as a source.


There is extra EEF in the Fatyanovo samples, EEF is essentially Levantine. Even if the migration took a circuitous route over many centuries, it still originated in the MidEast. The CHG (subsumed under “steppe”) and Levantine in Fatyanovo likely traveled together. At any rate, the steppe is an highly admixed region where almost all components have a prior history in the South.


The Mideast including Iran are large ecosystems that can hold and produce many lines while Europe lies at the recipient end of this Souther diversity starting with the yDNA-G in EEF, and yDNA-I which orignated from IJ in Iran. There are R lines in the South like R2. Mal’ta has R* and MtDNA-U*. and we know that U had to originate in the South among the much larger southern diversity of N/R/U. This gives an indication of where the yDNA-R lines originated - not to far from where all other european sink diversity originated.

You followed up your first post on site that was full of misinformation with even more misinformation in your second post.

R1a and R1b are present in Europe very early on. Europe is where they diversified if not originated. There was no constant stream of migration from the east or south to account for the diversity of R1a and R1b in ancient European DNA.

EEF is not Levantine life. Its basically Anatolia_N + WHG. EEF has its genesis in Europe. Also the idea that CHG and EEF traveled together is laughable. So CHG had to take a circuitous route from the Caucasus to Anatolia to the Balkans to the steppe as opposed to admixing onto the steppe directly? Also it is wrong that all steppe components are from the south. EHG (which is basically WHG + ANE) developed from Northern populations and for most of history of the steppe was the dominant component.

Y R2 exists in Iran_N. Guess what? Iran_N can't be modeled without significant ANE so still a northern line. Of course everything had to originate in the south at some point. Who ******* cares? Everything originated in Africa at some point too but nobody says R1a or R1b or I or J are African lineages. That's not where they originated or diversified or spent most of their history. Sure K* or K2 might be from Iran. That lineage might be more than 50,000 years old.

Ygorcs
09-07-20, 04:04
“LBA/IA” is simply one instance when these genotypes were transferred to the West. The same phenomena was repeated at later times with Scythian/Turkics and the like.

No, they weren't the same phenomena. They were completely different populations (genetically and culturally) under totally different socioeconomic circumstances. These ideas about extremely broad, sweeping "historical trends" over dozens of thousands of years always miss the details and end up being very deceiving. In North Eurasia, Upper Paleolithic ANE westward migration was not the same as EBA eastward migration from Eastern Europe, which was not the same as westward Scythian migration in the early IA, which was not the same as westward Turkic/Hunnic migration in the late IA, etc. Everything differed: the starting point, the extent of the expansion, the genetic makeup of the expanding population, and so on.


We know that the plethora of R lines do not originate in the West or Russia for that matter and there are multiple lines of evidence which lead to this conclusion. The west was sink for these lines however and thus can deceptively appear as a source.

No, we don't know that. The earliest R* is in Russia (Siberia), the earliest R1a and R1b lineages are all in North Asia and Europe (North Eurasia). The brother haplogroup of R, Q, is also mostly North Eurasian in both ancient and modern DNA distribution. Humankind's expansion from the south of course happened, but again pay attention at the chronology. We are talking about lineages that have a TMRCA in the last 6,000 years, we aren't talking about demographic events 40,000 to 50,000 years ago, when North Eurasia was peopled in different waves.


There is extra EEF in the Fatyanovo samples, EEF is essentially Levantine.

Hmm, no, it isn't "essentially Levantine". It's Anatolian, without the significant (~25-30%) North African ancestry found in Natufian (Epipaleolithic Levantines). And it's also ~5-25% WHG-admixed.


Even if the migration took a circuitous route over many centuries, it still originated in the MidEast. The CHG (subsumed under “steppe”) and Levantine in Fatyanovo likely traveled together. At any rate, the steppe is an highly admixed region where almost all components have a prior history in the South.

No, they likely didn't at all. EEF and CHG blended into steppe admixture spread northward through totally different routes and in different timelines. EEF and CHG were taking completely independent and isolated expansions in Europe until the Copper Age. Where have you been in the last years that you missed all the ancient DNA studies?

Also, the "prior history" in the south that you're speaking about happened hundreds or even thousands of years before the TMRCA of R1a-M17, so it has nothing to do with what we were originally discussing.


The Mideast including Iran are large ecosystems that can hold and produce many lines while Europe lies at the recipient end of this Souther diversity starting with the yDNA-G in EEF, and yDNA-I which orignated from IJ in Iran. There are R lines in the South like R2. Mal’ta has R* and MtDNA-U*. and we know that U had to originate in the South among the much larger southern diversity of N/R/U. This gives an indication of where the yDNA-R lines originated - not to far from where all other european sink diversity originated.

R2 probably came to South Asia with the early Iranian agriculturists, who were ~50% ANE, that is, derived from a NORTH > SOUTH migration in the Upper Paleolithic. That fits with a split between a southern lineage developing into R2 and a northern lineage remaining and developing into R1. Not everything went from the south to the north, history was much more complex.

Besides, ultimately you're talking about events that took place before 30,000 years ago, which have nothing to do with the much latter expansion of R1a-M17 in the Early Bronze Age.

Shahmiri
09-07-20, 09:06
You're clearly (again) having a hard time understanding what we are saying. R1a-M198/M17 (with a set of mutations linked to it, mainly M198 and M17) is just the upstream clade to R1a-M417, which is the upstream clade to several subclades like the one that clearly prevails the most among Indo-Iranian (including Iranian) people, which is Z93. When you belong to Z93, you also automatically belong to M17 and M198. Haplogroups are basically accumulated combinations of successive mutations. That has nothing to do with R1a-carrying male Iranians belonging to the basal forms of those haplogroups, mate. There's nothing "Iranian" about M198/M17, it's just that those studies didn't test their samples for the more recent and specific subclades of R1a, they just tested them to determine whether they belonged to the upstream M198/M17, which includes virtually 99% of all R1a carriers in the world today, or not. M198/M17 is basically what's present everywhere in the world where R1a has some non-negligible frequency. INTERPRET what you read before drawing conclusions, man.

What's so difficult about this basic phylogeny, huh?

You may be right but I think you also want to fool me, when they say there are also R1a-SRY1532.2(xM198) and R1a-M198(xM417) in Iran, it means they are negative for M198 and M417, so they couldn't be Z93.

Shahmiri
09-07-20, 09:40
More anachronistic views to reply to another anachronistic view. Between the PIE speakers and the Late Iron Age Turkic, Mongolic, Uralic and Hunnic people you're mentioning there's a very long gap of nearly 3,000 years. It's ridiculous to imagine nothing changed culturally and demographically in such a long time, particularly to people who emigrated in all directions and mixed heavily with already established societies. Besides, the steppe was the land of nomad PASTORALISTS, heavily relying on animal husbandry and on the horse, just like the roots of many IE cultural concepts that place a huge role and status on the ownership of livestock (to the point words related to money are even to this day derived from roots meaning "cattle") and of horses, especially horse mounting. Not to mention that they also worshipped horse and cattle gods and had as their original main deity a Sky God, as was typical of some other steppe semi-nomadic peoples. Nothing in IE cultures showing they originally wandered in the steppe? Ha, okay.

You are wrong those who originally lived in the steppe were nomadic hunter gatherers, nomadic pastoralism originated in the mountainous Zagros region in Iran, not the steppe: https://www.nature.com/articles/srep31326

Ygorcs
09-07-20, 15:35
You are wrong those who originally lived in the steppe were nomadic hunter gatherers, nomadic pastoralism originated in the mountainous Zagros region in Iran, not the steppe: https://www.nature.com/articles/srep31326

Yes, originated, but by the time PIE was spoken and started to split and expand, which is around the late 5th to early-mid 4th millennium B.C. pastoralism had already been developed in many different parts of the world, including the Pontic-Caspian steppe, even without any direct input from Iran_N people. Pastoralism is the natural way to go when you know agriculture, but cultivation is hard and not very productive in your land, but it's very favorable to animal husbandry. So, again: don't forget the chronology of events.

Ygorcs
09-07-20, 15:36
You may be right but I think you also want to fool me, when they say there are also R1a-SRY1532.2(xM198) and R1a-M198(xM417) in Iran, it means they are negative for M198 and M417, so they couldn't be Z93.

Yes, of course, but those are very minor lineages just like everywhere else where R1a achieves reasonably high frequencies.

ratchet_fan
09-07-20, 20:40
off topic:Corded Ware distribution resembles rye output.

https://upload.wikimedia.org/wikipedia/commons/f/f7/RyeYield.png

Shahmiri
09-07-20, 22:08
Yes, originated, but by the time PIE was spoken and started to split and expand, which is around the late 5th to early-mid 4th millennium B.C. pastoralism had already been developed in many different parts of the world, including the Pontic-Caspian steppe, even without any direct input from Iran_N people. Pastoralism is the natural way to go when you know agriculture, but cultivation is hard and not very productive in your land, but it's very favorable to animal husbandry. So, again: don't forget the chronology of events.
You say "the steppe was the land of nomad PASTORALISTS" and then you admit that the earliest nomad pastoralists were those who lived in Iran, not the steppe, so if these nomad pastoralists migrated to different lands and spread IE culture, their original land should be in Iran, not the steppe, whether 5,000 or 10,000 years ago.
For the same reason if R1a and R1b were their main haplogroups, they should be originated in Iran, not the steppe. Iran was not in another world but a major land in the south of steppe.

Ygorcs
10-07-20, 21:21
You say "the steppe was the land of nomad PASTORALISTS" and then you admit that the earliest nomad pastoralists were those who lived in Iran, not the steppe, so if these nomad pastoralists migrated to different lands and spread IE culture, their original land should be in Iran, not the steppe, whether 5,000 or 10,000 years ago.
For the same reason if R1a and R1b were their main haplogroups, they should be originated in Iran, not the steppe. Iran was not in another world but a major land in the south of steppe.

Pastoralism appeared in different populations in different parts of the world just like an agrarian way of life. Sorry, but we're long past the time people still believed one only population spread agriculture to the entire world. Independent evolutions do happen.

Also, Eneolithic and BA steppe pastoralists had no Iran_N admixture, far less any Iran_Chalc admixture. So, unless there was a people that looked like Eastern European hunter-gatherers admixed with Caucasians living in complete isolation in Iran, your hypothesis once again fails.

ratchet_fan
10-07-20, 21:52
Iran is absolutely another world when it comes to genetics. The steppe was EHG originally and then EHG + CHG. These components obviously differ from what was found in Iran at the same time.

Shahmiri
10-07-20, 22:21
Pastoralism appeared in different populations in different parts of the world just like an agrarian way of life. Sorry, but we're long past the time people still believed one only population spread agriculture to the entire world. Independent evolutions do happen.

Also, Eneolithic and BA steppe pastoralists had no Iran_N admixture, far less any Iran_Chalc admixture. So, unless there was a people that looked like Eastern European hunter-gatherers admixed with Caucasians living in complete isolation in Iran, your hypothesis once again fails.

I have no hypothesis, this is what geneticists say, for example according to Lazaridis et al.: "a population related to the people of the Iran Chalcolithic contributed ~43% of the ancestry of early Bronze Age populations of the steppe".

http://armchairprehistory.com/wp-content/uploads/2017/11/4000-BC-gene-map.gif

Compare to this map:

http://uupload.ir/files/lwhw_dome.jpg

ratchet_fan
10-07-20, 22:43
I have no hypothesis, this is what geneticists say, for example according to Lazaridis et al.: "a population related to the people of the Iran Chalcolithic contributed ~43% of the ancestry of early Bronze Age populations of the steppe".
http://armchairprehistory.com/wp-content/uploads/2017/11/4000-BC-gene-map.gif
Compare to this map:
http://uupload.ir/files/lwhw_dome.jpg

Both these maps look questionable. EHG in Southern Sweden in 4000 BC? Buffalo were domesticated in South Asia and SE Asia. Zebu were domesticated in the Indus Valley likely.

Ygorcs
10-07-20, 23:26
I have no hypothesis, this is what geneticists say, for example according to Lazaridis et al.: "a population related to the people of the Iran Chalcolithic contributed ~43% of the ancestry of early Bronze Age populations of the steppe".
http://armchairprehistory.com/wp-content/uploads/2017/11/4000-BC-gene-map.gif
Compare to this map:
http://uupload.ir/files/lwhw_dome.jpg

Lazaridis' statement is extremeley dubious, particular because he mentioned CHALCOLITHIC Iranians, who had a lot of other Near Eastern admixtures lacking in the Chalcolithic and EBA steppe. Very suspicious assertion, most likely wrong.

Did you notice in your second map that that Near Easten zone of animal domestication includes the Caucasus and Anatolia? Well, that's where genetics and archaeology indicate that the steppe hunter-gatherers took their pastoralism from.

Punish Them 911
11-07-20, 06:23
EHG were dark haired and dark eyed, but they had lighter skin.

:bored:

EHG weren't dark haired and dark eyed. They had the KITLG allele from the Ancient North Eurasians that contributes to blond hair and blue eyes in modeen Europeans.


Also, so much misinfo in this thread. Fatyanovo in this paper had the same frequency of blond hair and blue eyes as modern white Americans. Actually, they had more blonds than white Americans naturally do.

The later Indo-Aryans/Scythians would have had Baltic-tier pigmentation, which makes sense as Andronovo was already majority light haired and eyed, and the Scythians were already whiter than modern Europeans before the iron age. The reason Indians don't have that today is because it was a small number of Aryans mixing with mostly dark featured subcon natives. It's difficult for light pigmentation (which is polygenic) to predominate when so many people in a group carry a high number of dark pigmentation allele copies.


P.s. Sintashta had way more blonds than the claimed 20%.

Another proof is that several groups like the Yenisei Kyrgyz were majority blond/red haired and blue/green eyed in the iron age. Meaning that the light features weren't something that evolved in Europe gradually to the present day, but were already widespread across Eurasia before the iron age.

P.S. European people are actually losing their light pigmentation traits very quickly. In the early 1900s about half of white Americans had blue eyes; by 2006 it's only 1 in 4. Light pigmentation is something that was more common in the Bronze and Iron Ages and have been decreasing ever since.

https://www.nytimes.com/2006/10/18/world/americas/18iht-web.1018eyes.3199975.html

Shahmiri
11-07-20, 07:21
Lazaridis' statement is extremeley dubious, particular because he mentioned CHALCOLITHIC Iranians, who had a lot of other Near Eastern admixtures lacking in the Chalcolithic and EBA steppe. Very suspicious assertion, most likely wrong.

Did you notice in your second map that that Near Easten zone of animal domestication includes the Caucasus and Anatolia? Well, that's where genetics and archaeology indicate that the steppe hunter-gatherers took their pastoralism from.

Even in this study about "Genetic ancestry changes in Stone to Bronze Age transition in the East European plain", we read about Fatyanovo individuals: "These populations are composed of the blue “WHG” and yellow “Khanty” component and two brown components maximized in HG from the Caucasus and Iran, similarly to Yamnaya populations."

Whether through the Caucasus or Anatolia, Iran is the original source where pastoralism originated, in fact about 4,000 BC Iranian pastoralists migrated to the steppe and spread their own culture.

As Maciamo mentioend:


The Neolithic male sample is Q1a2-L54 (the Proto-Ameridian and Mongolian branch, also found in Scandinavia today as L804).

All the Bronze Age Fatyanovo samples are R1a, with 4x R1a-M417, 4x R1a-Z645 and 6x R1a-Z93.

R1b in Yamnaya:

https://cache.eupedia.com/images/content/R1b-migration-map.jpg

R1a in the Corded Ware and Fatyanovo:

https://upload.wikimedia.org/wikipedia/commons/thumb/c/c4/R1a_origins_%28Underhill_2010%29_and_R1a1a_oldest_ expansion_and_highest_frequency_%282014%29.jpg/1024px-R1a_origins_%28Underhill_2010%29_and_R1a1a_oldest_ expansion_and_highest_frequency_%282014%29.jpg

There is one common source: Iran

ratchet_fan
11-07-20, 13:25
:bored:

EHG weren't dark haired and dark eyed. They had the KITLG allele from the Ancient North Eurasians that contributes to blond hair and blue eyes in modeen Europeans.


Also, so much misinfo in this thread. Fatyanovo in this paper had the same frequency of blond hair and blue eyes as modern white Americans. Actually, they had more blonds than white Americans naturally do.

The later Indo-Aryans/Scythians would have had Baltic-tier pigmentation, which makes sense as Andronovo was already majority light haired and eyed, and the Scythians were already whiter than modern Europeans before the iron age. The reason Indians don't have that today is because it was a small number of Aryans mixing with mostly dark featured subcon natives. It's difficult for light pigmentation (which is polygenic) to predominate when so many people in a group carry a high number of dark pigmentation allele copies.


P.s. Sintashta had way more blonds than the claimed 20%.

Another proof is that several groups like the Yenisei Kyrgyz were majority blond/red haired and blue/green eyed in the iron age. Meaning that the light features weren't something that evolved in Europe gradually to the present day, but were already widespread across Eurasia before the iron age.

P.S. European people are actually losing their light pigmentation traits very quickly. In the early 1900s about half of white Americans had blue eyes; by 2006 it's only 1 in 4. Light pigmentation is something that was more common in the Bronze and Iron Ages and have been decreasing ever since.

https://www.nytimes.com/2006/10/18/world/americas/18iht-web.1018eyes.3199975.html

Whats your evidence that Sintashta was more than 20% (actually 25%) blonde?

Anfänger
11-07-20, 16:06
Shahmiri and Punish Them 911 would make a good couple. Both are blind to facts because of their ethnic pride.

ratchet_fan
11-07-20, 17:00
Shahmiri and Punish Them 911 would make a good couple. Both are blind to facts because of their ethnic pride.

How does ethnic pride motivate the latter?

Anfänger
11-07-20, 17:06
How does ethnic pride motivate the latter?

I know some older posts from him. He is just blinde to fact that there are no majority blonde blue eyed indoeuropean aryan "Übermensch". Maybe I should have called him Nordicist from the beginning and his username is just magnificent :grin:.

Shahmiri
11-07-20, 18:54
Shahmiri and Punish Them 911 would make a good couple. Both are blind to facts because of their ethnic pride.

It is much better to be blind to facts because of ethnic pride than ethnic hatred. However this discussion has nothing to modern ethnicities, there has been several migrations from and to Iran in the last thousands years, I believe modern Europeans are much closer to ancient people of Iran than modern Iranians.

ratchet_fan
11-07-20, 19:23
It is much better to be blind to facts because of ethnic pride than ethnic hatred. However this discussion has nothing to modern ethnicities, there has been several migrations from and to Iran in the last thousands years, I believe modern Europeans are much closer to ancient people of Iran than modern Iranians.

There's no basis for the last statement at all. Just sounds like the crazy Nordicist theories that Iran was inhabited by European like people till the Turks and Arabs showed up. The people that represent the most ancient Iranians the best are populations high in Iran_N so basically Pakistani Balochis and Brahui (they're low in Steppe_MLBA and AASI too). Later Iranians had more Anatolia_N and then obviously Steppe_MLBA makes an appearance. Other than some Turkic impact in Azerbaijan and Khorosan and some Arab impact in Khuzestan there's no massive discontinuity.

ratchet_fan
11-07-20, 19:24
I know some older posts from him. He is just blinde to fact that there are no majority blonde blue eyed indoeuropean aryan "Übermensch". Maybe I should have called him Nordicist from the beginning and his username is just magnificent :grin:.

I see. The Japan flag was throwing me off.

Shahmiri
11-07-20, 19:44
There's no basis for the last statement at all. Just sounds like the crazy Nordicist theories that Iran was inhabited by European like people till the Turks and Arabs showed up. The people that represent the most ancient Iranians the best are populations high in Iran_N so basically Pakistani Balochis and Brahui (they're low in Steppe_MLBA and AASI too). Later Iranians had more Anatolia_N and then obviously Steppe_MLBA makes an appearance. Other than some Turkic impact in Azerbaijan and Khorosan and some Arab impact in Khuzestan there's no massive discontinuity.

I mostly meant culturally than genetically, the same thing can be said about people of Turkey, those who live in Greece and other parts of Europe are closer to the ancient people of Turkey than modern Turks who live there.

ratchet_fan
12-07-20, 04:41
I mostly meant culturally than genetically, the same thing can be said about people of Turkey, those who live in Greece and other parts of Europe are closer to the ancient people of Turkey than modern Turks who live there.

Well in the case of Turkey the people of Greece and Armenia are obviously closer to ancient Turkey than modern Turks.

Shahmiri
12-07-20, 07:42
Well in the case of Turkey the people of Greece and Armenia are obviously closer to ancient Turkey than modern Turks.

After several years of researching about ancient Iran, I also believe that the people of Greece and other parts of Europe are closer to pre-Iranian people than modern Iranians. Probably for the same reason ancient Persian kings had focused on Greece and finally some people from this region conquered their empire. It seems Xerxes knew this thing when he said to Greeks "We are descended from your nation" but from another side Greek culture seems to be his major problem, in his Daiva Inscription, he says: "there were among these countries (some) which worshipped and performed religious services to the daiva. But, by the favor of Ahura Mazda I eradicated these daivadana and proclaimed (as follows): The daiva shall not be worshipped (anymore). Thus, wherever formerly the daiva were worshipped, there I worshipped Ahuramazda and Arta reverent(ly)." Herzfeld who first published the text argued that the daiva were the pre-Zoroastrians deities whose temples (the daivadana) in Iran were destroyed by Xerxes but we know he just destroyed Greek temples, like the Old Temple of Athena. Iranian daiva has the same origin of Mycenaean Greek diwo and Ancient Greek zeus from Proto-Indo-European *dyḗws.

Philjames100
12-07-20, 17:54
Mesolithic EHG were as dark overall as Sub-Saharan Africans (imagine them looking more Ethiopian or Somalian). https://www.eupedia.com/forum/attachment.php?attachmentid=12240

I don't see how that can be, as EHG had high frequencies of SLC24a5 and SLC45a2 light-pigmentation alleles, along with other light pigmentation alleles, and lacked the dark pigmentation alleles identified by Crawford et al. 2017 in sub-Saharan African populations.

Philjames100
12-07-20, 20:47
It's really during the Iron Age that Northeast Europeans started becoming blue-eyed blonds.

The Tarim mummies have blonde and red hair. Nordic Bronze Age mummies also have blonde hair.


"The derived allele of the KITLG SNP rs12821256 that is associated with – and likely causal for – blond hair in Europeans is present in one hunter-gatherer from each of Samara, Motala and Ukraine (I0124, I0014 and I1763), as well as several later individuals with Steppe ancestry. Since the allele is found in populations with EHG but not WHG ancestry, it suggests that its origin is in the Ancient North Eurasian (ANE) population. Consistent with this, we observe that earliest known individual with the derived allele is the [Siberian] ANE individual Afontova Gora 3 which is directly dated to 16130-15749 cal BCE."

Mathieson et al. 2018, Supplementary Information (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091220/)

Ygorcs
12-07-20, 20:55
Well in the case of Turkey the people of Greece and Armenia are obviously closer to ancient Turkey than modern Turks.

Maybe Armenians are, but most Greeks, especially Greek mainlanders are not IMHO. Pre-Turkic Anatolians are closer to modern Anatolian Greeks from the Mediterranean coast and Cappadocia, even more closely, IIRC, than to Armenians. But most mainlander Greeks (modern ones at least) have too much ANF and steppe to fully represent the medieval Anatolians.

Ygorcs
12-07-20, 21:09
Even in this study about "Genetic ancestry changes in Stone to Bronze Age transition in the East European plain", we read about Fatyanovo individuals: "These populations are composed of the blue “WHG” and yellow “Khanty” component and two brown components maximized in HG from the Caucasus and Iran, similarly to Yamnaya populations."

Whether through the Caucasus or Anatolia, Iran is the original source where pastoralism originated, in fact about 4,000 BC Iranian pastoralists migrated to the steppe and spread their own culture.

There is no evidence of such a migration (certainly not that late), and most studies find CHG a much better fit for the southern input into the steppes than Iran_N, though it is indeed true that both are so similar, differentiated only by some relatively minor proportions of ancestral components, that there is a high likelihood that the calculators may assign ancestry to one or the other somewhat inaccurately.

Besides, by 4000 B.C. the Eneolithic Steppe already had a lot of CHG, and according to a very recent article by Anthony on the Indo-European question there are several other Eneolithic Steppe samples to be published which prove that southerners' expansion into the steppe happened roughly between the early 6th and the mid 5th millennium B.C. So, certainly before 4500 BC. Therefore it is very unlikely that PIE developed outside the steppe and only a particular early branch of it moved into the steppe. The EHG:CHG admixture had begun many centuries or even more than a millennnium before PIE was last spoken as a common language.


As Maciamo mentioend:
R1b in Yamnaya:

https://cache.eupedia.com/images/content/R1b-migration-map.jpg

R1a in the Corded Ware and Fatyanovo:

https://upload.wikimedia.org/wikipedia/commons/thumb/c/c4/R1a_origins_%28Underhill_2010%29_and_R1a1a_oldest_ expansion_and_highest_frequency_%282014%29.jpg/1024px-R1a_origins_%28Underhill_2010%29_and_R1a1a_oldest_ expansion_and_highest_frequency_%282014%29.jpg

There is one common source: Iran

All those maps, IF THEY ARE CORRECT, are talking about the very early origins of R1b and R1a. The steppe Indo-European expansion is not associated with that event, but with the spread of very specific and much more recent clades, especially R1b-Z2103, R1b-L51, R1a-M417, and so on. Again: chronology matters. If you're talking about IE languages and cultures, it doesn't really matter much where R1b and R1a first appeared and started to spread from. That would've been dozens of thousands of years before PIE was spoken in its latest stages, so even in the unlikely hypothesis of complete continuity between lineages and the languages and cultures originally associated with them, culture and language would've changed so much as to become totally unrecognizable.

Ygorcs
12-07-20, 21:11
Shahmiri and Punish Them 911 would make a good couple. Both are blind to facts because of their ethnic pride.

Indeed, and as for the issue of whether it's better to be blind by ethnic pride than ethnic hate I'd say that sooner or later they become just two sides of the same coin. ;-)