Eupedia Forums
Site NavigationEupedia Top > Eupedia Forum & Japan Forum
Results 1 to 5 of 5

Thread: Flexible TVs and high performance wearable smart tech one step closer

  1. #1
    Moderator Achievements:
    Three FriendsTagger First Class1 year registered50000 Experience Points
    Awards:
    Master Tagger
    Jovialis's Avatar
    Join Date
    04-05-17
    Location
    New York City
    Posts
    2,813
    Points
    89,483
    Level
    93
    Points: 89,483, Level: 93
    Level completed: 7%, Points required for next Level: 1,767
    Overall activity: 99.3%

    Y-DNA haplogroup
    R1b1a1a2b1 (R-F1794)
    MtDNA haplogroup
    H6a1b

    Ethnic group
    Italian
    Country: United States



    Flexible TVs and high performance wearable smart tech one step closer



    Flexible televisions, tablets and phones as well as 'truly wearable' smart tech are a step closer thanks to a nanoscale transistor created by researchers at The University of Manchester and Shandong University in China.

    The international team has developed an ultrafast, nanoscale transistor – known as a thin film transistor, or TFT, - made out of an oxide semiconductor. The TFT is the first oxide-semiconductor based transistor that is capable of operating at a benchmark speed of 1 GHz. This could make the next generation electronic gadgets even faster, brighter and more flexible than ever before.

    A TFT is a type of transistor usually used in a liquid crystal display (LCD). These can be found in most modern gadgets with LCD screens such as smart phones, tablets and high-definition televisions.

    How do they work? LCD features a TFT behind each individual pixel and they act as individual switches that allow the pixels to change state rapidly, making them turn on and off much more quickly.

    But most current TFTs are silicon-based which are opaque, rigid and expensive in comparison to the oxide semiconductor family of transistors which the team from the UK and China are developing. Whilst oxide TFTs will improve picture on LCD displays, it is their flexibility that is even more impressive.

    Aimin Song, Professor of Nanoelectronics in the School of Electrical & Electronic Engineering, The University of Manchester, explains: "TVs can already be made extremely thin and bright. Our work may help make TV more mechanically flexible and even cheaper to produce.

    "But, perhaps even more importantly, our GHz transistors may enable medium or even high performance flexible electronic circuits, such as truly wearable electronics.

    "Wearable electronics requires flexibility and in many cases transparency, too. This would be the perfect application for our research.

    "Plus, there is a trend in developing smart homes, smart hospitals and smart cities – in all of which oxide semiconductor TFTs will play a key role."

    Oxide-based technology has seen rapid development when compared to its silicon counterpart which is increasingly close to some fundamental limitations. Prof Song says there has been fast progress in oxide-semiconductors in recent years and extensive efforts have been made in order to improve the speed of oxide-semiconductor-based TFTs.

    So much so some oxide-based technology has already started replacing amorphous silicon in some gadgets. Prof Song thinks these latest developments have brought commercialisation much closer.

    He added: "To commercialise oxide-based electronics there is still a range of research and development that has to be carried out on materials, lithography, device design, testing, and last but not the least, large-area manufacturing. It took many decades for silicon technology to get this far, and oxides are progressing at a much faster pace.

    "Making a high performance device, like our GHz IGZO transistor, is challenging because not only do materials need to be optimised, a range of issues regarding device design, fabrication and tests also have to be investigated. In 2015, we were able to demonstrate the fastest flexible diodes using oxide semiconductors, reaching 6.3 GHz, and it is still the world record to date. So we're confident in oxide-semiconductor based technologies."

    Read more at: https://phys.org/news/2018-04-flexib...smart.html#jCp

    https://ieeexplore.ieee.org/document/8306513/

  2. #2
    Advisor Achievements:
    Three FriendsVeteran25000 Experience Points
    bicicleur's Avatar
    Join Date
    27-01-13
    Location
    Zwevegem, Belgium
    Posts
    5,335
    Points
    46,102
    Level
    66
    Points: 46,102, Level: 66
    Level completed: 40%, Points required for next Level: 848
    Overall activity: 0%


    Country: Belgium - Flanders



    is this to be integrated into the new OLED screens or is this yet another new seperate technology?

  3. #3
    Moderator Achievements:
    Three FriendsTagger First Class1 year registered50000 Experience Points
    Awards:
    Master Tagger
    Jovialis's Avatar
    Join Date
    04-05-17
    Location
    New York City
    Posts
    2,813
    Points
    89,483
    Level
    93
    Points: 89,483, Level: 93
    Level completed: 7%, Points required for next Level: 1,767
    Overall activity: 99.3%

    Y-DNA haplogroup
    R1b1a1a2b1 (R-F1794)
    MtDNA haplogroup
    H6a1b

    Ethnic group
    Italian
    Country: United States



    Quote Originally Posted by bicicleur View Post
    is this to be integrated into the new OLED screens or is this yet another new seperate technology?
    I think it will eventually be integrated.

    If the screens are really malleable, I would imagine they could be used sort of like a wall paper. Instead of having a single tv screen, the entire wall or room could have it.

  4. #4
    Advisor Achievements:
    Three FriendsVeteran25000 Experience Points
    bicicleur's Avatar
    Join Date
    27-01-13
    Location
    Zwevegem, Belgium
    Posts
    5,335
    Points
    46,102
    Level
    66
    Points: 46,102, Level: 66
    Level completed: 40%, Points required for next Level: 848
    Overall activity: 0%


    Country: Belgium - Flanders



    Quote Originally Posted by Jovialis View Post
    I think it will eventually be integrated.

    If the screens are really malleable, I would imagine they could be used sort of like a wall paper. Instead of having a single tv screen, the entire wall or room could have it.
    yes, it would be a perfect match
    I can imagine large screens being commanded by a smartphone, which could become smaller again

  5. #5
    Elite member Achievements:
    Veteran5000 Experience Points
    Coriolan's Avatar
    Join Date
    04-12-12
    Posts
    178
    Points
    7,884
    Level
    26
    Points: 7,884, Level: 26
    Level completed: 56%, Points required for next Level: 266
    Overall activity: 2.0%


    Country: Switzerland



    Quote Originally Posted by Jovialis View Post
    I think it will eventually be integrated.

    If the screens are really malleable, I would imagine they could be used sort of like a wall paper. Instead of having a single tv screen, the entire wall or room could have it.
    Having a screen covering the whole wall would not necessarily be a good thing for watching TV. But it would allow to customise the appearance of the room. People could change their wall colour according to their mood or use photo wallpapers like on their computer screen. Your wall could be customised to look like a view from a huge window over a peaceful meadow or a dramatic landscape. That would be nice.

    Sent from my Redmi 5 Plus using Tapatalk

Tags for this Thread

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •