K12b Dodecad K12b Ancient West Eurasia [by Eupedia Team]

Status
Not open for further replies.
Here are studies that I am currently unable to obtain samples for, since I am only able to utilize FTP submitted BAM files. I need to figure out how to utilize Fastq and/or SRA, as well as CRAM, in order to create coordinates:

[TABLE="width: 1755"]
[TR]
[TD]New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB2830[/TD]
[TD="align: right"]1[/TD]
[TD]*Unclear sample arrangement[/TD]
[/TR]
[TR]
[TD]Upper Palaeolithic genomes reveal deep roots of modern Eurasians[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB11364[/TD]
[TD="align: right"]3[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]The Neolithic Transition in the Baltic Was Not Driven by Admixture with Early European Farmers[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB18067[/TD]
[TD="align: right"]9[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]The genetic history of admixture across inner Eurasia[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB31152[/TD]
[TD="align: right"]6[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]Paleogenomic Evidence for Multi-generational Mixing between Neolithic Farmers and Mesolithic Hunter-Gatherers in the Lower Danube Basin[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB20616[/TD]
[TD="align: right"]6[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]Extensive farming in Estonia started through a sex-biased migration from the Steppe[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB21037[/TD]
[TD="align: right"]9[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]Genomic signals of migration and continuity in Britain before the Anglo-Saxons[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB11004[/TD]
[TD="align: right"]14[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB14737[/TD]
[TD="align: right"]14[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]A western route of prehistoric human migration from Africa into the Iberian Peninsula [/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB29189[/TD]
[TD="align: right"]21[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]The first horse herders and the impact of early Bronze Age steppe expansions into Asia[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB26349[/TD]
[TD="align: right"]111[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]Understanding 6th-century barbarian social organization and migration through paleogenomics[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB27220[/TD]
[TD="align: right"]53[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB11995[/TD]
[TD="align: right"]28[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]A genomic Neolithic time transect of hunter-farmer admixture in central Poland[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJNA318237[/TD]
[TD="align: right"]17[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB22699[/TD]
[TD="align: right"]23[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Continuity and Admixture in the Last Five Millennia of Levantine History from Ancient Canaanite and Present-Day Lebanese Genome Sequences[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB21330[/TD]
[TD="align: right"]100[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]A Transient Pulse of Genetic Admixture from the Crusaders in the Near East Identified from Ancient Genome Sequences[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB31618[/TD]
[TD="align: right"]116[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]The genetic prehistory of the Baltic Sea region[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJNA421333[/TD]
[TD="align: right"]80[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Ancient Genomes Reveal Yamnaya-Related Ancestry and a Potential Source of Indo-European Speakers in Iron Age Tianshan[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB32336[/TD]
[TD="align: right"]10[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]A Common Genetic Origin for Early Farmers from Mediterranean Cardial and Central European LBK Cultures[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJNA280812[/TD]
[TD="align: right"]12[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJNA230689[/TD]
[TD="align: right"]1[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Iron Age and Anglo-Saxon genomes from East England reveal British migration history (Hinxton)[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB4604 [/TD]
[TD="align: right"]92[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Iron Age and Anglo-Saxon genomes from East England reveal British migration history (Linton and Oakington)[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB6915[/TD]
[TD="align: right"]18[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB6090[/TD]
[TD="align: right"]35[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB7618[/TD]
[TD="align: right"]1[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]Unraveling ancestry, kinship, and violence in a Late Neolithic mass grave[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB28451[/TD]
[TD="align: right"]24[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB15464[/TD]
[TD="align: right"]93[/TD]
[TD]Raw data files are too small[/TD]
[/TR]
[TR]
[TD]ANGSD: Analysis of Next Generation Sequencing Data[/TD]
[TD]?[/TD]
[TD]?[/TD]
[TD]*Cannot locate samples[/TD]
[/TR]
[TR]
[TD]Ancient admixture in human history[/TD]
[TD]?[/TD]
[TD]?[/TD]
[TD]*Cannot locate samples[/TD]
[/TR]
[TR]
[TD]A Late Bronze Age II clay coffin from Tel Shaddudin the Central Jezreel Valley, Israel: context andhistorical implications[/TD]
[TD]?[/TD]
[TD]?[/TD]
[TD]*Cannot locate samples[/TD]
[/TR]
[TR]
[TD]Testing support for the northern and southern dispersal routes out of Africa: an analysis of Levantine and southern Arabian populations[/TD]
[TD]?[/TD]
[TD]?[/TD]
[TD]*Cannot locate samples[/TD]
[/TR]
[TR]
[TD]Ancient DNA of Phoenician remains indicates discontinuity in the settlement history of Ibiza[/TD]
[TD]accession numbers: MH43585-43559[/TD]
[TD]?[/TD]
[TD]Author to upload bams[/TD]
[/TR]
[/TABLE]
 
Here are non-Homo Sapien studies, but I will not include them in the project.

[TABLE="width: 1308"]
[TR]
[TD]A high-coverage genome sequence from an archaic Denisovan individual[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB3092[/TD]
[TD][/TD]
[/TR]
[TR]
[TD]A high-coverage Neandertal genome from Vindija Cave in Croatia[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB21157[/TD]
[TD] & https://www.ebi.ac.uk/ena/browser/view/PRJEB21195[/TD]
[/TR]
[TR]
[TD]The complete genome sequence of a Neanderthal from the Altai Mountains[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB1265[/TD]
[TD]& https://www.ebi.ac.uk/ena/browser/view/PRJEB1757[/TD]
[/TR]
[TR]
[TD]The genome of the offspring of a Neanderthal mother and a Denisovan father[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB24663[/TD]
[TD][/TD]
[/TR]
[TR]
[TD]Reconstructing the genetic history of late Neanderthals[/TD]
[TD]PRJEB21870; PRJEB21875; PRJEB21881; PRJEB21882: PRJEB21883[/TD]
[TD][/TD]
[/TR]
[/TABLE]
 
I will endeavor to potentially add 1,547 new DNA samples from 37 Ancient DNA studies. I obtained the sources from the Reich Lab data set. I specifically took solely DNA studies from the West Eurasian region; Europe, Middle East, and North Africa. While excluding east Asian, North American, South Asia, Sub-Saharan African, and Oceania studies. I have already located all of the ENA download links, and excluded studies that do not offer BAM format compatible with the means of which I will process the files.

I currently have 1,315 raw data files from 20 DNA studies, that I can create coordinates for any calculator. If I include the new additions from the 37 studies, I will potentially have up to 2,800+ files give or take, from 57 DNA studies.

There are currently 3,589 aDNA samples, I will have 2,800 of them. Which would probably be 95% of all the West Eurasian DNA samples there are.

Fortunately, some of the ones I am missing are on gedmatch, so we could have up to 99% of them.

Here is where the project currently is:

Completed Studies (Raw data files obtained)

Pending Studies (Work in progress)

Problem Studies (Will not be included unless resolved)

Non-West Eurasian Studies (Will not be included)

Non-Homo Sapien Studies (Will not be included)
 
Here are studies that I am currently unable to obtain samples for, since I am only able to utilize FTP submitted BAM files. I need to figure out how to utilize Fastq and/or SRA, as well as CRAM, in order to create coordinates:

[TABLE="width: 1755"]
[TR]
[TD]New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB2830[/TD]
[TD="align: right"]1[/TD]
[TD]*Unclear sample arrangement[/TD]
[/TR]
[TR]
[TD]Upper Palaeolithic genomes reveal deep roots of modern Eurasians[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB11364[/TD]
[TD="align: right"]3[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]The Neolithic Transition in the Baltic Was Not Driven by Admixture with Early European Farmers[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB18067[/TD]
[TD="align: right"]9[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]The genetic history of admixture across inner Eurasia[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB31152[/TD]
[TD="align: right"]6[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]Paleogenomic Evidence for Multi-generational Mixing between Neolithic Farmers and Mesolithic Hunter-Gatherers in the Lower Danube Basin[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB20616[/TD]
[TD="align: right"]6[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]Extensive farming in Estonia started through a sex-biased migration from the Steppe[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB21037[/TD]
[TD="align: right"]9[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]Genomic signals of migration and continuity in Britain before the Anglo-Saxons[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB11004[/TD]
[TD="align: right"]14[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB14737[/TD]
[TD="align: right"]14[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]A western route of prehistoric human migration from Africa into the Iberian Peninsula[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB29189[/TD]
[TD="align: right"]21[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]The first horse herders and the impact of early Bronze Age steppe expansions into Asia[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB26349[/TD]
[TD="align: right"]111[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]Understanding 6th-century barbarian social organization and migration through paleogenomics[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB27220[/TD]
[TD="align: right"]53[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB11995[/TD]
[TD="align: right"]28[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]A genomic Neolithic time transect of hunter-farmer admixture in central Poland[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJNA318237[/TD]
[TD="align: right"]17[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB22699[/TD]
[TD="align: right"]23[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Continuity and Admixture in the Last Five Millennia of Levantine History from Ancient Canaanite and Present-Day Lebanese Genome Sequences[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB21330[/TD]
[TD="align: right"]100[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]A Transient Pulse of Genetic Admixture from the Crusaders in the Near East Identified from Ancient Genome Sequences[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB31618[/TD]
[TD="align: right"]116[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]The genetic prehistory of the Baltic Sea region[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJNA421333[/TD]
[TD="align: right"]80[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Ancient Genomes Reveal Yamnaya-Related Ancestry and a Potential Source of Indo-European Speakers in Iron Age Tianshan[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB32336[/TD]
[TD="align: right"]10[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]A Common Genetic Origin for Early Farmers from Mediterranean Cardial and Central European LBK Cultures[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJNA280812[/TD]
[TD="align: right"]12[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJNA230689[/TD]
[TD="align: right"]1[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Iron Age and Anglo-Saxon genomes from East England reveal British migration history (Hinxton)[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB4604 [/TD]
[TD="align: right"]92[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Iron Age and Anglo-Saxon genomes from East England reveal British migration history (Linton and Oakington)[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB6915[/TD]
[TD="align: right"]18[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB6090[/TD]
[TD="align: right"]35[/TD]
[TD]No FTP BAMs[/TD]
[/TR]
[TR]
[TD]Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB7618[/TD]
[TD="align: right"]1[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]Unraveling ancestry, kinship, and violence in a Late Neolithic mass grave[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB28451[/TD]
[TD="align: right"]24[/TD]
[TD]BAMs do not work with WGSextract[/TD]
[/TR]
[TR]
[TD]Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods[/TD]
[TD]https://www.ebi.ac.uk/ena/browser/view/PRJEB15464[/TD]
[TD="align: right"]93[/TD]
[TD]Raw data files are too small[/TD]
[/TR]
[TR]
[TD]ANGSD: Analysis of Next Generation Sequencing Data[/TD]
[TD]?[/TD]
[TD]?[/TD]
[TD]*Cannot locate samples[/TD]
[/TR]
[TR]
[TD]Ancient admixture in human history[/TD]
[TD]?[/TD]
[TD]?[/TD]
[TD]*Cannot locate samples[/TD]
[/TR]
[TR]
[TD]A Late Bronze Age II clay coffin from Tel Shaddudin the Central Jezreel Valley, Israel: context andhistorical implications[/TD]
[TD]?[/TD]
[TD]?[/TD]
[TD]*Cannot locate samples[/TD]
[/TR]
[TR]
[TD]Testing support for the northern and southern dispersal routes out of Africa: an analysis of Levantine and southern Arabian populations[/TD]
[TD]?[/TD]
[TD]?[/TD]
[TD]*Cannot locate samples[/TD]
[/TR]
[TR]
[TD]Ancient DNA of Phoenician remains indicates discontinuity in the settlement history of Ibiza[/TD]
[TD]accession numbers: MH43585-43559[/TD]
[TD]?[/TD]
[TD]Author to upload bams[/TD]
[/TR]
[/TABLE]
Thankfully, there are gedmatch kits for some of these studies. Moreover, there are already coordinates for some of these for Dodecad K12b included in the existing list. For example, we already have CEG Amorim et al 2018. I just don't have the raw data files to utilize for other calculators, for those specific studies. We also already have Ötzi.
 
Once I finish the West Eurasian studies that I can, I will move on to the non-West Eurasian studies.
 
In addition to the 400 new samples from the Bell Beaker paper, here are the coordinates for the new studies I have included. I will give the appropriate archeological information, once I am done. These 8 studies didn't have that many samples, but many of the files were huge. I still have 15 studies to go, but with over a thousand samples left:

Code:
H_Malmström_et_al._2019:ajv54,0,1.42,0,0,30.67,65.9,0,0,0,0,0,2
H_Malmström_et_al._2019:ber2F,11.14,1.77,0,0,23.35,51.06,2.05,0.31,0,0,8.25,2.08
H_Malmström_et_al._2019:oll007,9.45,0.02,0,1.38,33.34,45.34,0.49,0.86,0.97,0,7.12,1.04
H_Malmström_et_al._2019:oll009,8.29,0.29,0,0,36.86,50.43,0.3,0.04,0,0,2.85,0.94
H_Malmström_et_al._2019:oll010,9.85,0,0,0.58,31.76,50.61,0,0,0,0,5.99,1.22
H_Malmström_et_al._2019:poz44,17.34,1.17,0,0,13.69,58.69,3.48,0.76,0,0,4.73,0.15
H_Malmström_et_al._2019:poz81,26.07,1.99,0,0,9.07,60.49,0.24,0,0,0,0,2.14
H_Malmström_et_al._2019:ros3,0,1.06,1.29,0,61.05,11.23,0,0,11.51,0.12,12.95,0.8
H_Malmström_et_al._2019:ros005,0,0,2.25,0.84,59.11,19.45,0.02,0,9.18,0,8.87,0.28
Broushaki_et_al._2016:AH1,66.39,0,0,1.02,0,0.09,7.83,1.19,3.06,0,16.99,3.44
Broushaki_et_al._2016:AH2,63.99,0,0,2.76,0,0,6.41,2.52,5.04,0,16.65,2.63
Broushaki_et_al._2016:AH4,63.77,2.47,0,0,0,0,6.51,0.34,7.73,0,15.36,3.81
Broushaki_et_al._2016:F38,25.65,0.25,0,0,9.04,4.5,3.43,0,14.62,0,40.6,1.91
Broushaki_et_al._2016:WC1,57.56,0,0,0,0,0,8.04,0.57,6.98,0,23.25,3.6
M_Krzewińska_et_al._2018_(Vikings):2072,3.04,0,4.72,4.28,19.03,66.26,0,0,0,0,0,2.67
M_Krzewińska_et_al._2018_(Vikings):84001,6.89,1.42,0.83,0.41,33.37,50.53,0,0,0,0.4,3.08,3.06
M_Krzewińska_et_al._2018_(Vikings):84005,5.44,0.75,0.46,1.13,26.1,58.18,1.65,0,2.34,0,2.13,1.82
M_Krzewińska_et_al._2018_(Vikings):84035,7.41,2.36,0,0,32.78,46.42,2.82,0,2.47,0,5.13,0.62
M_Krzewińska_et_al._2018_(Vikings):97002,8.35,0,0,0,30.82,44.64,0,2.78,0,2.55,10.66,0.22
M_Krzewińska_et_al._2018_(Vikings):97026,4.44,1.68,0,1.21,33.29,47.72,0,0,0,0,10.01,1.65
M_Krzewińska_et_al._2018_(Vikings):97029,7.96,2.39,0,1.6,35.05,49.29,0,1.84,0,0,1.03,0.84
M_Krzewińska_et_al._2018_(Vikings):bns023-b1e1l1,13.9,0,0,0,45.45,23.47,0,0,0,3.56,12.26,1.37
M_Krzewińska_et_al._2018_(Vikings):grt035,7.88,0.67,1.24,0.27,40.98,45.48,0.1,0.95,0,0,2.16,0.26
M_Krzewińska_et_al._2018_(Vikings):grt036,6.86,0.27,0,0.88,30.92,51.42,0.55,0.39,0.7,0,6.36,1.65
M_Krzewińska_et_al._2018_(Vikings):gtm021-b1e1l1p1,4.76,0,0,1.49,29.3,53.64,0,0,0.71,0.78,6.76,2.57
M_Krzewińska_et_al._2018_(Vikings):gtm127-b1e1l1p1,6.03,0.69,1.8,1.82,43.75,42.39,0,0,0,0,3.51,0
M_Krzewińska_et_al._2018_(Vikings):KAL006,4.13,4.31,0,0.21,17.24,67.71,1.68,0.62,0,0,3.32,0.78
M_Krzewińska_et_al._2018_(Vikings):kal009,0,0,0,0,16.54,74.03,2.91,0,0.24,0,6.28,0
M_Krzewińska_et_al._2018_(Vikings):kls001-b1e1l1,12.63,0,0,0,35.55,45.7,0,0,0,1.6,2.62,1.89
M_Krzewińska_et_al._2018_(Vikings):nuf002-b1e1l1p1,10.38,0.78,0,0,30.78,44.55,0,0,0,0,11.76,1.74
M_Krzewińska_et_al._2018_(Vikings):stg020,6.31,4.05,0,0,24.59,62.45,0,0,0,0,1.35,1.24
M_Krzewińska_et_al._2018_(Vikings):stg021,6.5,1.37,1.24,0.86,32.69,47.88,1.72,0.66,0,0,5.2,1.88
M_Krzewińska_et_al._2018_(Vikings):stg026,2.73,1.13,0,0.57,30.6,56.82,0,0,0,0,5.41,2.75
M_Krzewińska_et_al._2018_(Vikings):urm035,5.96,1.19,0.38,0,31.32,53.92,2.69,0.03,0,0,2.91,1.59
M_Krzewińska_et_al._2018_(Vikings):urm045,3.21,0,0.51,0,24.75,57.23,0,2.18,0,0.05,12.06,0
M_Krzewińska_et_al._2018_(Vikings):urm160,5.95,1.97,0.49,0.85,28.25,55.52,0,0.46,0,0,4.58,1.92
M_Krzewińska_et_al._2018_(Vikings):urm161,8.81,0,0,0,41.48,43.45,3.12,0,0,0,0,3.14
C_Valdiosera_et_al._2018:atp002,0,0.03,5.12,0.55,62.93,13.54,0,0.48,4.78,1.62,6.7,4.26
C_Valdiosera_et_al._2018:atp005,0,2.01,1.09,0,60.84,0.31,0,0,11.22,0,20.99,3.54
C_Valdiosera_et_al._2018:atp12-1420,0,0,5.74,0.83,68.17,15.8,0.24,0,5.32,0.38,2.75,0.76
C_Valdiosera_et_al._2018:atp016,0,0,5.35,0.42,68.81,5.51,0,0.33,7.06,0,12.38,0.13
C_Valdiosera_et_al._2018:atp019,0,1.8,4.25,0,57.46,0.34,0,0,5.16,0.73,26.62,3.63
C_Valdiosera_et_al._2018:atp019,0,0,7.52,0.71,62.29,1.56,0,0,7.84,0,19.26,0.81
C_Valdiosera_et_al._2018:c40331,0,0,3.16,1.06,67.38,11.19,0,0,4.72,0,11.94,0.56
C_Valdiosera_et_al._2018:esp005,3.66,0.8,3.69,1.65,53.52,26.43,0,0,2.04,0.18,5.89,2.13
C_Valdiosera_et_al._2018:mur,0,0,5.67,0,66.23,2.59,0,0.46,8.21,1.52,14.45,0.87
C_Valdiosera_et_al._2018:pir001,0,0.66,1.98,0.37,55.66,23.52,3.77,0,8.17,0,3.33,2.54
C_Valdiosera_et_al._2018:por002,0,0,5.37,0.02,64.98,15.06,0,0,6.18,0.7,6.47,1.23
C_Valdiosera_et_al._2018:por003,0,0,3.03,0,63.76,26.93,0,0,0.23,0,0,6.05
C_Valdiosera_et_al._2018:por003,3.94,0,5.6,0,52.18,18.95,0.66,2.75,6.57,0,8.92,0.42
C_Valdiosera_et_al._2018:por004,0,0.67,1.47,0.21,63.5,15.9,0,0.26,9.07,0,8.05,0.87
C_Valdiosera_et_al._2018:san216,0,0,1.47,1.06,68.69,11.03,0,0.37,7.4,0,7.71,2.27
T_Günther_et_al._‎2018:H22,0,7.17,0,0,7.56,82.86,0,0,0,0,0,2.41
T_Günther_et_al._‎2018:H26,0,5.15,0,0,11.42,80.94,0.61,0,0,0.2,0,1.68
T_Günther_et_al._‎2018:sbj001,0,3.12,0,0,11.18,84.49,0,0.19,0,0,0,1.03
T_Günther_et_al._‎2018:sf11,0,3.86,0,0,22.4,68.89,2.74,0,0,0,0,2.11
T_Günther_et_al._‎2018:stg001,0,4.84,0,0,11.19,83.35,0,0,0,0,0,0.62
AG_Nikitin_et_al:I6912_all,6.42,0,7.58,0,46.18,36.28,0,0,0.2,0,3.33,0
AG_Nikitin_et_al:I6913,0,0,0,0,58.75,41.25,0,0,0,0,0,0
AG_Nikitin_et_al:I6914,0,0,4.67,0.17,50.82,0,0,0.03,14.5,0,29.81,0
R_Rodríguez-Varela_et_al._2018:gun002,0,1.31,31.56,0,24.78,1.36,2.41,8.3,15.17,0,8.59,6.52
R_Rodríguez-Varela_et_al._2018:gun005,0,0,23.21,1.53,28.6,4.15,1.69,7.18,17.37,0,11.07,5.21
R_Rodríguez-Varela_et_al._2018:gun008,0,1.97,26.93,0,30.43,2.24,0,10.25,14.64,0,9.75,3.78
R_Rodríguez-Varela_et_al._2018:gun011,0,0,34.12,1.26,20.39,1.62,1.13,8.15,16.3,0,10.26,6.77
R_Rodríguez-Varela_et_al._2018:gun012,0,0,35.63,0,21.14,1.91,0.21,10.49,12.35,1.01,11.28,5.98
Z_Hofmanová_et_al._2016:Bar8,0,0,4.96,0,45.12,0,0,0,13.39,0.45,33.88,2.2
Z_Hofmanová_et_al._2016:Bar31,0,0,4.68,0.92,45.75,0,0,0,14.24,0,31.86,2.55
Z_Hofmanová_et_al._2016:Klei10,0,0,2.1,0.17,46.06,0,0,0,14.18,0,35.73,1.76
Z_Hofmanová_et_al._2016:Pal7,0,0,4.41,0.01,47.42,0,0,0,13.07,0.67,32.97,1.44
Z_Hofmanová_et_al._2016:Rev5,0,0,4.74,0,48.42,0,0,0,12.15,0.13,33.21,1.35
Fu_etal._2015:Oase1,9.78,0.91,0.43,14.51,2.67,12.1,29.17,11.2,1.93,7.17,1.73,8.39
 
In addition to the 400 new samples from the Bell Beaker paper, here are the coordinates for the new studies I have included. I will give the appropriate archeological information, once I am done. These 8 studies didn't have that many samples, but many of the files were huge. I still have 15 studies to go, but with over a thousand samples left:

Code:
H_Malmström_et_al._2019:ajv54,0,1.42,0,0,30.67,65.9,0,0,0,0,0,2
H_Malmström_et_al._2019:ber2F,11.14,1.77,0,0,23.35,51.06,2.05,0.31,0,0,8.25,2.08
H_Malmström_et_al._2019:oll007,9.45,0.02,0,1.38,33.34,45.34,0.49,0.86,0.97,0,7.12,1.04
H_Malmström_et_al._2019:oll009,8.29,0.29,0,0,36.86,50.43,0.3,0.04,0,0,2.85,0.94
H_Malmström_et_al._2019:oll010,9.85,0,0,0.58,31.76,50.61,0,0,0,0,5.99,1.22
H_Malmström_et_al._2019:poz44,17.34,1.17,0,0,13.69,58.69,3.48,0.76,0,0,4.73,0.15
H_Malmström_et_al._2019:poz81,26.07,1.99,0,0,9.07,60.49,0.24,0,0,0,0,2.14
H_Malmström_et_al._2019:ros3,0,1.06,1.29,0,61.05,11.23,0,0,11.51,0.12,12.95,0.8
H_Malmström_et_al._2019:ros005,0,0,2.25,0.84,59.11,19.45,0.02,0,9.18,0,8.87,0.28
Broushaki_et_al._2016:AH1,66.39,0,0,1.02,0,0.09,7.83,1.19,3.06,0,16.99,3.44
Broushaki_et_al._2016:AH2,63.99,0,0,2.76,0,0,6.41,2.52,5.04,0,16.65,2.63
Broushaki_et_al._2016:AH4,63.77,2.47,0,0,0,0,6.51,0.34,7.73,0,15.36,3.81
Broushaki_et_al._2016:F38,25.65,0.25,0,0,9.04,4.5,3.43,0,14.62,0,40.6,1.91
Broushaki_et_al._2016:WC1,57.56,0,0,0,0,0,8.04,0.57,6.98,0,23.25,3.6
M_Krzewińska_et_al._2018_(Vikings):2072,3.04,0,4.72,4.28,19.03,66.26,0,0,0,0,0,2.67
M_Krzewińska_et_al._2018_(Vikings):84001,6.89,1.42,0.83,0.41,33.37,50.53,0,0,0,0.4,3.08,3.06
M_Krzewińska_et_al._2018_(Vikings):84005,5.44,0.75,0.46,1.13,26.1,58.18,1.65,0,2.34,0,2.13,1.82
M_Krzewińska_et_al._2018_(Vikings):84035,7.41,2.36,0,0,32.78,46.42,2.82,0,2.47,0,5.13,0.62
M_Krzewińska_et_al._2018_(Vikings):97002,8.35,0,0,0,30.82,44.64,0,2.78,0,2.55,10.66,0.22
M_Krzewińska_et_al._2018_(Vikings):97026,4.44,1.68,0,1.21,33.29,47.72,0,0,0,0,10.01,1.65
M_Krzewińska_et_al._2018_(Vikings):97029,7.96,2.39,0,1.6,35.05,49.29,0,1.84,0,0,1.03,0.84
M_Krzewińska_et_al._2018_(Vikings):bns023-b1e1l1,13.9,0,0,0,45.45,23.47,0,0,0,3.56,12.26,1.37
M_Krzewińska_et_al._2018_(Vikings):grt035,7.88,0.67,1.24,0.27,40.98,45.48,0.1,0.95,0,0,2.16,0.26
M_Krzewińska_et_al._2018_(Vikings):grt036,6.86,0.27,0,0.88,30.92,51.42,0.55,0.39,0.7,0,6.36,1.65
M_Krzewińska_et_al._2018_(Vikings):gtm021-b1e1l1p1,4.76,0,0,1.49,29.3,53.64,0,0,0.71,0.78,6.76,2.57
M_Krzewińska_et_al._2018_(Vikings):gtm127-b1e1l1p1,6.03,0.69,1.8,1.82,43.75,42.39,0,0,0,0,3.51,0
M_Krzewińska_et_al._2018_(Vikings):KAL006,4.13,4.31,0,0.21,17.24,67.71,1.68,0.62,0,0,3.32,0.78
M_Krzewińska_et_al._2018_(Vikings):kal009,0,0,0,0,16.54,74.03,2.91,0,0.24,0,6.28,0
M_Krzewińska_et_al._2018_(Vikings):kls001-b1e1l1,12.63,0,0,0,35.55,45.7,0,0,0,1.6,2.62,1.89
M_Krzewińska_et_al._2018_(Vikings):nuf002-b1e1l1p1,10.38,0.78,0,0,30.78,44.55,0,0,0,0,11.76,1.74
M_Krzewińska_et_al._2018_(Vikings):stg020,6.31,4.05,0,0,24.59,62.45,0,0,0,0,1.35,1.24
M_Krzewińska_et_al._2018_(Vikings):stg021,6.5,1.37,1.24,0.86,32.69,47.88,1.72,0.66,0,0,5.2,1.88
M_Krzewińska_et_al._2018_(Vikings):stg026,2.73,1.13,0,0.57,30.6,56.82,0,0,0,0,5.41,2.75
M_Krzewińska_et_al._2018_(Vikings):urm035,5.96,1.19,0.38,0,31.32,53.92,2.69,0.03,0,0,2.91,1.59
M_Krzewińska_et_al._2018_(Vikings):urm045,3.21,0,0.51,0,24.75,57.23,0,2.18,0,0.05,12.06,0
M_Krzewińska_et_al._2018_(Vikings):urm160,5.95,1.97,0.49,0.85,28.25,55.52,0,0.46,0,0,4.58,1.92
M_Krzewińska_et_al._2018_(Vikings):urm161,8.81,0,0,0,41.48,43.45,3.12,0,0,0,0,3.14
C_Valdiosera_et_al._2018:atp002,0,0.03,5.12,0.55,62.93,13.54,0,0.48,4.78,1.62,6.7,4.26
C_Valdiosera_et_al._2018:atp005,0,2.01,1.09,0,60.84,0.31,0,0,11.22,0,20.99,3.54
C_Valdiosera_et_al._2018:atp12-1420,0,0,5.74,0.83,68.17,15.8,0.24,0,5.32,0.38,2.75,0.76
C_Valdiosera_et_al._2018:atp016,0,0,5.35,0.42,68.81,5.51,0,0.33,7.06,0,12.38,0.13
C_Valdiosera_et_al._2018:atp019,0,1.8,4.25,0,57.46,0.34,0,0,5.16,0.73,26.62,3.63
C_Valdiosera_et_al._2018:atp019,0,0,7.52,0.71,62.29,1.56,0,0,7.84,0,19.26,0.81
C_Valdiosera_et_al._2018:c40331,0,0,3.16,1.06,67.38,11.19,0,0,4.72,0,11.94,0.56
C_Valdiosera_et_al._2018:esp005,3.66,0.8,3.69,1.65,53.52,26.43,0,0,2.04,0.18,5.89,2.13
C_Valdiosera_et_al._2018:mur,0,0,5.67,0,66.23,2.59,0,0.46,8.21,1.52,14.45,0.87
C_Valdiosera_et_al._2018:pir001,0,0.66,1.98,0.37,55.66,23.52,3.77,0,8.17,0,3.33,2.54
C_Valdiosera_et_al._2018:por002,0,0,5.37,0.02,64.98,15.06,0,0,6.18,0.7,6.47,1.23
C_Valdiosera_et_al._2018:por003,0,0,3.03,0,63.76,26.93,0,0,0.23,0,0,6.05
C_Valdiosera_et_al._2018:por003,3.94,0,5.6,0,52.18,18.95,0.66,2.75,6.57,0,8.92,0.42
C_Valdiosera_et_al._2018:por004,0,0.67,1.47,0.21,63.5,15.9,0,0.26,9.07,0,8.05,0.87
C_Valdiosera_et_al._2018:san216,0,0,1.47,1.06,68.69,11.03,0,0.37,7.4,0,7.71,2.27
T_Günther_et_al._‎2018:H22,0,7.17,0,0,7.56,82.86,0,0,0,0,0,2.41
T_Günther_et_al._‎2018:H26,0,5.15,0,0,11.42,80.94,0.61,0,0,0.2,0,1.68
T_Günther_et_al._‎2018:sbj001,0,3.12,0,0,11.18,84.49,0,0.19,0,0,0,1.03
T_Günther_et_al._‎2018:sf11,0,3.86,0,0,22.4,68.89,2.74,0,0,0,0,2.11
T_Günther_et_al._‎2018:stg001,0,4.84,0,0,11.19,83.35,0,0,0,0,0,0.62
AG_Nikitin_et_al:I6912_all,6.42,0,7.58,0,46.18,36.28,0,0,0.2,0,3.33,0
AG_Nikitin_et_al:I6913,0,0,0,0,58.75,41.25,0,0,0,0,0,0
AG_Nikitin_et_al:I6914,0,0,4.67,0.17,50.82,0,0,0.03,14.5,0,29.81,0
R_Rodríguez-Varela_et_al._2018:gun002,0,1.31,31.56,0,24.78,1.36,2.41,8.3,15.17,0,8.59,6.52
R_Rodríguez-Varela_et_al._2018:gun005,0,0,23.21,1.53,28.6,4.15,1.69,7.18,17.37,0,11.07,5.21
R_Rodríguez-Varela_et_al._2018:gun008,0,1.97,26.93,0,30.43,2.24,0,10.25,14.64,0,9.75,3.78
R_Rodríguez-Varela_et_al._2018:gun011,0,0,34.12,1.26,20.39,1.62,1.13,8.15,16.3,0,10.26,6.77
R_Rodríguez-Varela_et_al._2018:gun012,0,0,35.63,0,21.14,1.91,0.21,10.49,12.35,1.01,11.28,5.98
Z_Hofmanová_et_al._2016:Bar8,0,0,4.96,0,45.12,0,0,0,13.39,0.45,33.88,2.2
Z_Hofmanová_et_al._2016:Bar31,0,0,4.68,0.92,45.75,0,0,0,14.24,0,31.86,2.55
Z_Hofmanová_et_al._2016:Klei10,0,0,2.1,0.17,46.06,0,0,0,14.18,0,35.73,1.76
Z_Hofmanová_et_al._2016:Pal7,0,0,4.41,0.01,47.42,0,0,0,13.07,0.67,32.97,1.44
Z_Hofmanová_et_al._2016:Rev5,0,0,4.74,0,48.42,0,0,0,12.15,0.13,33.21,1.35
Fu_etal._2015:Oase1,9.78,0.91,0.43,14.51,2.67,12.1,29.17,11.2,1.93,7.17,1.73,8.39

Thanks Jovialis. Great work.

[TABLE="class: distances"]
[TR]
[TH="align: right"]Distance to:[/TH]
[TH]Duarte[/TH]
[/TR]
[TR]
[TD="bgcolor: #FF0000, align: right"]12.51164258[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):bns023-b1e1l1[/TD]
[/TR]
[TR]
[TD="bgcolor: #FF0012, align: right"]12.94545480[/TD]
[TD]C_Valdiosera_et_al._2018_por003[/TD]
[/TR]
[TR]
[TD="bgcolor: #FF0054, align: right"]14.56458719[/TD]
[TD]C_Valdiosera_et_al._2018:esp005[/TD]
[/TR]
[TR]
[TD="bgcolor: #FF00E2, align: right"]18.03420084[/TD]
[TD]AG_Nikitin_et_al:I6912_all[/TD]
[/TR]
[TR]
[TD="bgcolor: #EF00FF, align: right"]19.14299088[/TD]
[TD]C_Valdiosera_et_al._2018-pir001[/TD]
[/TR]
[TR]
[TD="bgcolor: #BA00FF, align: right"]20.44078521[/TD]
[TD]H_Malmström_et_al._2019:ros005[/TD]
[/TR]
[TR]
[TD="bgcolor: #5900FF, align: right"]22.80863871[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):gtm127-b1e1l1p1[/TD]
[/TR]
[TR]
[TD="bgcolor: #1400FF, align: right"]24.51884989[/TD]
[TD]C_Valdiosera_et_al._2018:atp002[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]25.15568524[/TD]
[TD]C_Valdiosera_et_al._2018-por004[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]25.21904836[/TD]
[TD]H_Malmström_et_al._2019:ros3[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]25.64877190[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):urm161[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]26.01182039[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):nuf002-b1e1l1p1[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]26.03405462[/TD]
[TD]H_Malmström_et_al._2019_oll007[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]26.10459730[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):grt035[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]26.12311046[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):97002[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]26.16635244[/TD]
[TD]C_Valdiosera_et_al._2018-por002[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]26.62157584[/TD]
[TD]C_Valdiosera_et_al._2018_por003[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]27.53782308[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):97026[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]27.69584445[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):84035[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]27.82489533[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):kls001-b1e1l1[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]28.51821698[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):stg021[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]29.00167581[/TD]
[TD]C_Valdiosera_et_al._2018:c40331[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]29.68399737[/TD]
[TD]AG_Nikitin_et_al:I6913[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]29.81141728[/TD]
[TD]C_Valdiosera_et_al._2018:atp12-1420[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]30.85896466[/TD]
[TD]C_Valdiosera_et_al._2018:san216[/TD]
[/TR]
[/TABLE]

[TH="class: singleheader, colspan: 2"]Distance: 1.2657% / 1.26572987
Target: Duarte[/TH]

[TD="class: singleleftcolumn, align: right"]31.0[/TD]
[TD="class: singlerightcolumn"]C_Valdiosera_et_al._2018:atp019[/TD]

[TD="class: barchartmode1 nonselectable, colspan: 2"][/TD]

[TD="class: singleleftcolumn, align: right"]23.1[/TD]
[TD="class: singlerightcolumn"]C_Valdiosera_et_al._2018-por003[/TD]

[TD="class: barchartmode1 nonselectable, colspan: 2"][/TD]

[TD="class: singleleftcolumn, align: right"]15.9[/TD]
[TD="class: singlerightcolumn"]M_Krzewińska_et_al._2018_(Vikings):2072[/TD]

[TD="class: barchartmode1 nonselectable, colspan: 2"][/TD]

[TD="class: singleleftcolumn, align: right"]8.6[/TD]
[TD="class: singlerightcolumn"]R_Rodríguez-Varela_et_al._2018:gun012[/TD]

[TD="class: barchartmode1 nonselectable, colspan: 2"][/TD]

[TD="class: singleleftcolumn, align: right"]7.1[/TD]
[TD="class: singlerightcolumn"]Broushaki_et_al._2016:AH2[/TD]

[TD="class: barchartmode1 nonselectable, colspan: 2"][/TD]

[TD="class: singleleftcolumn, align: right"]6.4[/TD]
[TD="class: singlerightcolumn"]M_Krzewińska_et_al._2018_(Vikings):gtm021-b1e1l1p1[/TD]

[TD="class: barchartmode1 nonselectable, colspan: 2"][/TD]

[TD="class: singleleftcolumn, align: right"]4.3[/TD]
[TD="class: singlerightcolumn"]M_Krzewińska_et_al._2018_(Vikings):urm045[/TD]

[TD="class: barchartmode1 nonselectable, colspan: 2"][/TD]

[TD="class: singleleftcolumn, align: right"]3.6[/TD]
[TD="class: singlerightcolumn"]Z_Hofmanová_et_al._2016:Klei10[/TD]

[TD="class: barchartmode1 nonselectable, colspan: 2"][/TD]


 

[TH="class: singleheader, colspan: 2, align: left"]Distance: 0.5733% / 0.57330876
Target: Carlos [/TH]

[TD="class: singleleftcolumn, align: right"] 47.0 [/TD]
[TD="class: singlerightcolumn"] AG_Nikitin_et_al [/TD]

[TD="class: barchartmode1 nonselectable, colspan: 2"]
[/TD]

[TD="class: singleleftcolumn, align: right"] 29.0 [/TD]
[TD="class: singlerightcolumn"] C_Valdiosera_et_al._2018 [/TD]

[TD="class: barchartmode1 nonselectable, colspan: 2"]
[/TD]

[TD="class: singleleftcolumn, align: right"] 20.8 [/TD]
[TD="class: singlerightcolumn"] M_Krzewińska_et_al._2018_(Vikings) [/TD]

[TD="class: barchartmode1 nonselectable, colspan: 2"]
[/TD]

[TD="class: singleleftcolumn, align: right"] 2.8 [/TD]
[TD="class: singlerightcolumn"] Broushaki_et_al._2016 [/TD]

[TD="class: barchartmode1 nonselectable, colspan: 2"][/TD]

[TD="class: singleleftcolumn, align: right"] 0.4 [/TD]
[TD="class: singlerightcolumn"] R_Rodríguez-Varela_et_al._2018 [/TD]


Code:
 [TABLE="class: distances"]
[TR]
[TH="align: right"]Distance to:[/TH]
[TH="align: left"]Carlos[/TH]
[/TR]
[TR]
[TD="bgcolor: #FF1700, align: right"]11.93520842[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):bns023-b1e1l1[/TD]
[/TR]
[TR]
[TD="bgcolor: #FF1400, align: right"]12.00195817[/TD]
[TD]C_Valdiosera_et_al._2018:esp005[/TD]
[/TR]
[TR]
[TD="bgcolor: #FF0A00, align: right"]12.25876013[/TD]
[TD]C_Valdiosera_et_al._2018:por003[/TD]
[/TR]
[TR]
[TD="bgcolor: #FF005D, align: right"]14.77451860[/TD]
[TD]AG_Nikitin_et_al:I6912_all[/TD]
[/TR]
[TR]
[TD="bgcolor: #FF00CD, align: right"]17.52231434[/TD]
[TD]C_Valdiosera_et_al._2018:pir001[/TD]
[/TR]
[TR]
[TD="bgcolor: #FF00F9, align: right"]18.60408289[/TD]
[TD]H_Malmström_et_al._2019:ros005[/TD]
[/TR]
[TR]
[TD="bgcolor: #E300FF, align: right"]19.44671180[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):gtm127-b1e1l1p1[/TD]
[/TR]
[TR]
[TD="bgcolor: #4C00FF, align: right"]23.14453715[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):grt035[/TD]
[/TR]
[TR]
[TD="bgcolor: #4100FF, align: right"]23.39565558[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):urm161[/TD]
[/TR]
[TR]
[TD="bgcolor: #3300FF, align: right"]23.75584770[/TD]
[TD]C_Valdiosera_et_al._2018:por004[/TD]
[/TR]
[TR]
[TD="bgcolor: #2500FF, align: right"]24.08419399[/TD]
[TD]H_Malmström_et_al._2019:oll007[/TD]
[/TR]
[TR]
[TD="bgcolor: #1F00FF, align: right"]24.23133921[/TD]
[TD]C_Valdiosera_et_al._2018:atp002[/TD]
[/TR]
[TR]
[TD="bgcolor: #1C00FF, align: right"]24.30774979[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):97002[/TD]
[/TR]
[TR]
[TD="bgcolor: #1B00FF, align: right"]24.34070665[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):nuf002-b1e1l1p1[/TD]
[/TR]
[TR]
[TD="bgcolor: #0F00FF, align: right"]24.64065746[/TD]
[TD]H_Malmström_et_al._2019:ros3[/TD]
[/TR]
[TR]
[TD="bgcolor: #0D00FF, align: right"]24.68898742[/TD]
[TD]C_Valdiosera_et_al._2018:por003[/TD]
[/TR]
[TR]
[TD="bgcolor: #0200FF, align: right"]24.95575284[/TD]
[TD]C_Valdiosera_et_al._2018:por002[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]25.18321068[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):97026[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]25.56117368[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):84035[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]25.57667101[/TD]
[TD]AG_Nikitin_et_al:I6913[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]25.92400818[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):kls001-b1e1l1[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]26.53891671[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):stg021[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]27.92243542[/TD]
[TD]C_Valdiosera_et_al._2018:c40331[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]28.20669601[/TD]
[TD]H_Malmström_et_al._2019:oll009[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]28.40673512[/TD]
[TD]C_Valdiosera_et_al._2018:atp12-1420[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]28.63582197[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):97029[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]29.23711682[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):84001[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]29.46974041[/TD]
[TD]H_Malmström_et_al._2019:oll010[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]30.02625351[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):grt036[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]30.06468526[/TD]
[TD]C_Valdiosera_et_al._2018:san216[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]31.87566470[/TD]
[TD]C_Valdiosera_et_al._2018:atp019[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]32.54940245[/TD]
[TD]C_Valdiosera_et_al._2018:atp016[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]32.55123346[/TD]
[TD]C_Valdiosera_et_al._2018:atp019[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]32.56987565[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):gtm021-b1e1l1p1[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]32.95237624[/TD]
[TD]C_Valdiosera_et_al._2018:mur[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]32.95280868[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):urm035[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]33.42753207[/TD]
[TD]C_Valdiosera_et_al._2018:atp005[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]34.07439655[/TD]
[TD]AG_Nikitin_et_al:I6914[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]34.23320902[/TD]
[TD]H_Malmström_et_al._2019:ber2F[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]34.58160060[/TD]
[TD]Z_Hofmanová_et_al._2016:Bar31[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]34.83264130[/TD]
[TD]Z_Hofmanová_et_al._2016:Rev5[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]34.87085316[/TD]
[TD]Z_Hofmanová_et_al._2016:Pal7[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]35.07657053[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):urm160[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]35.08963950[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):stg026[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]35.40174713[/TD]
[TD]Z_Hofmanová_et_al._2016:Bar8[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]36.85167703[/TD]
[TD]Z_Hofmanová_et_al._2016:Klei10[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]37.20194887[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):urm045[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]37.31044894[/TD]
[TD]R_Rodríguez-Varela_et_al._2018:gun005[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]38.84485423[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):84005[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]39.31218386[/TD]
[TD]R_Rodríguez-Varela_et_al._2018:gun008[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]43.54323598[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):stg020[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]44.66437954[/TD]
[TD]H_Malmström_et_al._2019:ajv54[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]45.00664729[/TD]
[TD]R_Rodríguez-Varela_et_al._2018:gun002[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]47.76471292[/TD]
[TD]H_Malmström_et_al._2019:poz44[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]48.35291822[/TD]
[TD]R_Rodríguez-Varela_et_al._2018:gun012[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]48.60912980[/TD]
[TD]R_Rodríguez-Varela_et_al._2018:gun011[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]49.62054312[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):2072[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]50.57897884[/TD]
[TD]T_Günther_et_al._‎2018:sf11[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]51.09880331[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):KAL006[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]55.68000090[/TD]
[TD]H_Malmström_et_al._2019:poz81[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]55.69369713[/TD]
[TD]Broushaki_et_al._2016:F38[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]56.35121028[/TD]
[TD]M_Krzewińska_et_al._2018_(Vikings):kal009[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]58.72826747[/TD]
[TD]Fu_etal._2015:Oase1[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]65.86880673[/TD]
[TD]T_Günther_et_al._‎2018:H26[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]67.95502998[/TD]
[TD]T_Günther_et_al._‎2018:stg001[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]68.83537898[/TD]
[TD]T_Günther_et_al._‎2018:sbj001[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]69.62579335[/TD]
[TD]T_Günther_et_al._‎2018:H22[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]75.44942081[/TD]
[TD]Broushaki_et_al._2016:WC1[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]79.25261636[/TD]
[TD]Broushaki_et_al._2016:AH4[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]79.35222429[/TD]
[TD]Broushaki_et_al._2016:AH2[/TD]
[/TR]
[TR]
[TD="bgcolor: #0000FF, align: right"]81.20734203[/TD]
[TD]Broushaki_et_al._2016:AH1

[/TD]
[/TR]
[/TABLE]
 
Hmmm, it seems that certain samples, or putting too many samples into the 3D PCA breaks it. The algorithm goes out of whack, and the samples are projected wrong. I noticed this happens if you put in the Broushaki samples. I also noticed it happened when putting in the Balkan samples with the new additions, along with the rest. Perhaps it has to do with the high number of HGs, but it didn't happen previously. It is a shame because I would have liked to see all of the samples together.
 
Hmmm, it seems that certain samples, or putting too many samples into the 3D PCA breaks it. The algorithm goes out of whack, and the samples are projected wrong. I noticed this happens if you put in the Broushaki samples. I also noticed it happened when putting in the Balkan samples with the new additions, along with the rest. Perhaps it has to do with the high number of HGs, but it didn't happen previously. It is a shame because I would have liked to see all of the samples together.

This is why I would love to run these samples through a calculator that is made for analyzing ancient DNA specifically, rather than one made with modern DNA source components.
 
Luckily this issue doesn't seem to be happening with Dodecad Globe 13. So far, so good.
 
Luckily this issue doesn't seem to be happening with Dodecad Globe 13. So far, so good.

Here is a preview of the 3D PCA for globe 13, projected over modern populations. All of the new samples are included, and the PCA remains accurate. This brings the total up from 1,315, to 1,859. More to come:

31qMbhf.png
 
Vahaduo Dodecad K12b Ancient added of the coordinates produced by Jovialis and Salento at

https://www.ebi.ac.uk/ena/browser/view/PRJEB37660
... just a test, ... 1 by 4 locations:
I'm not sure my apps arefully compatible with these .bam(s), … that's all the samples I'm gonna post :)

dod k12
Code:
[COLOR=#222222][FONT=Verdana]BRC003_Dodecad_K12b,1.48,0.00,2.35,1.33,46.70,24.27,0.00,0.00,5.74,0.00,17.40,0.74[/FONT][/COLOR]
Code:
[B][COLOR=#000000][COLOR=#313131][FONT=-apple-system]
[/FONT][/COLOR][/COLOR][/B][COLOR=#000000][COLOR=#313131][FONT=-apple-system][COLOR=#222222][FONT=Verdana]GCP002A1_Dodecad_K12b,2.18,0.00,3.15,3.26,44.50,29.77,0.00,0.00,5.27,0.00,11.87,0.00[/FONT][/COLOR]
[COLOR=#222222][FONT=Verdana]GLR001A1_Dodecad_K12b,0.00,1.77,4.40,0.00,58.27,5.15,0.00,0.00,11.05,0.22,17.72,1.41[/FONT][/COLOR]
[COLOR=#222222][FONT=Verdana]LSC002_004_Dodecad_K12b,0.00,0.00,0.00,0.00,62.94,2.45,0.00,0.00,6.28,0.00,26.23,2.11[/FONT][/COLOR][/FONT][/COLOR][/COLOR][B][COLOR=#000000][COLOR=#313131][FONT=-apple-system]
[/FONT][/COLOR][/COLOR][/B]

dod k13
Code:
[COLOR=#222222][FONT=Verdana]BRC003_Dod_Globe13,0.00,0.00,1.53,0.00,7.15,2.00,46.64,0.00,0.00,6.54,36.15,0.00,0.00[/FONT][/COLOR]
[COLOR=#222222][FONT=Verdana]GCP002A1_Dod_Globe13,0.00,0.06,0.56,0.00,7.87,2.46,41.92,0.00,0.36,7.63,39.13,0.00,0.00[/FONT][/COLOR]
[COLOR=#222222][FONT=Verdana]GLR001A1_Dod_Globe13,0.00,0.00,2.04,0.00,13.48,0.00,59.66,0.13,0.96,4.05,19.69,0.00,0.00[/FONT][/COLOR]
[COLOR=#222222][FONT=Verdana]LSC002_004_Dod_Globe13,0.00,0.00,1.53,0.15,14.88,0.00,62.80,0.28,0.00,2.48,17.88,0.00,0.00[/FONT][/COLOR]


Special thanks to Salento for putting this on my radar:
Of the 35 samples, these are the ones that processed through Admixture Studio.
Code:
utigBRC002,0.87,0,1.36,0,45.47,25.27,2.32,0,4.39,0,18.99,1.33
utigBRC007_019,3.5,0,1.75,0.58,48.28,18.96,0,0,9.11,0.52,16.2,1.1
utigBRC010_018,0,0,5.13,0.5,47.79,19.51,0,0,7.86,0,18.69,0.51
utigBRC011,0,0,0,0,37.8,0,0,0,42.9,0,19.29,0
utigBRC012,0,15.45,0,0,40.8,0,0,0,43.74,0,0,0
utigBRC013,0,0,6.28,0,57.75,0,0,0,6.97,0,29,0
utigBRC022,0,0,0,0.94,62.87,3.14,0,0,10.14,0,22.91,0
utigBRC024,0,0,0,0,52.32,30.37,0,5.35,0,0,10.84,1.12
utigGCP002A1,2.18,0,3.15,3.26,44.5,29.77,0,0,5.27,0,11.87,0
utigGCP003A1,7.58,1.55,0.86,0,49.29,22.95,0,0,4.32,0,13.45,0
utigGCP004A1,22.15,0,0,0,37.5,23.7,6.64,0,10.01,0,0,0
utigGLR002A1,0,0,6.65,0,63.81,1.89,0,0,5.79,0,21.86,0
utigGLR003B1,0,0,9.49,4.97,65.66,0,0,0,0,0,17.94,1.93
utigLSC002_004,0,0,0,0,62.94,2.45,0,0,6.28,0,26.23,2.11
utigLSC007A1,0,0,0,0,95.95,0,0,0.6,3.45,0,0,0
utigLSC011A1,0,0,8.94,0,53.32,7.47,0,0,14.31,0,15.96,0
utigLSC012A1,0,0,0,0,97.48,0,0,0,0,2.52,0,0



[TH="align: right"]Distance to:[/TH]
Duarte
GironaSantJuliadeRamis_I10892
GironaSantJuliadeRamis_I10895
EarlyMedievalAndalusia_I3585
I12516_SE_Iberia_c.10-16CE
I12514_SE_Iberia_c.10-16CE
R63_Medieval_Era_Villa_Magna
Roman-SoldierFN_2
EarlyMedievalIberiaGranada_I3981
GironaSantJuliadeRamis_I10852
MedievalTaifaofValencia_I12649
CrusaderKnightFrenchLebanonCrusaderSI40
I3982_SE_Iberia_c.3-4CE
I7675_NE_Iberia_c.6-8CE_ES
GironaSantJuliadeRamis_I10853
R110_Late_Antiquity_Crypta_Balbi
I2215_Malak_Preslavets
R1289_Medieval_Era_Cancelleria
I7673_NE_Iberia_c.6-8CE_ES
R474_Iron_Age_Civitavecchia
CarthagoMaghrebiAndalusia_I7457
I12515_SE_Iberia_c.10-16CE
SpaniardCordobaCaliphate_I12515
BRC003_Dodecad_K12b
France_BA_NIED
GalloRomanCeltMixIberia_I10866

[TH="align: right"][/TH]

[TD="bgcolor: #D6FF00, align: right"] 6.29654667 [/TD]

[TD="bgcolor: #E8FF00, align: right"] 6.83142738 [/TD]

[TD="bgcolor: #F3FF00, align: right"] 7.15328596 [/TD]

[TD="bgcolor: #FCFF00, align: right"] 7.40270896 [/TD]

[TD="bgcolor: #FFFE00, align: right"] 7.51741312 [/TD]

[TD="bgcolor: #FFF500, align: right"] 7.79453013 [/TD]

[TD="bgcolor: #FFF200, align: right"] 7.87062895 [/TD]

[TD="bgcolor: #FFEF00, align: right"] 7.96743999 [/TD]

[TD="bgcolor: #FFEE00, align: right"] 7.98827891 [/TD]

[TD="bgcolor: #FFE400, align: right"] 8.29628230 [/TD]

[TD="bgcolor: #FFDB00, align: right"] 8.57093927 [/TD]

[TD="bgcolor: #FFD800, align: right"] 8.65500433 [/TD]

[TD="bgcolor: #FFD300, align: right"] 8.79383307 [/TD]

[TD="bgcolor: #FFD100, align: right"] 8.85043502 [/TD]

[TD="bgcolor: #FFCC00, align: right"] 8.99556557 [/TD]

[TD="bgcolor: #FFC700, align: right"] 9.14401444 [/TD]

[TD="bgcolor: #FFC600, align: right"] 9.16999455 [/TD]

[TD="bgcolor: #FFBA00, align: right"] 9.54338514 [/TD]

[TD="bgcolor: #FFB500, align: right"] 9.68139453 [/TD]

[TD="bgcolor: #FFB400, align: right"] 9.70848598 [/TD]

[TD="bgcolor: #FFB200, align: right"] 9.77754570 [/TD]

[TD="bgcolor: #FFB200, align: right"] 9.77754570 [/TD]

[TD="bgcolor: #FFB100, align: right"] 9.78898360 [/TD]

[TD="bgcolor: #FFAF00, align: right"] 9.85898575 [/TD]

[TD="bgcolor: #FFA700, align: right"] 10.09213060 [/TD]
Duarte
40.60% I8210_NE_Iberia_Greek_Empuries1 + 59.40% MoriscoConvertAndalusia_I7425
39.80% I8202_NE_Iberia_RomP_Empuries1 + 60.20% MoriscoConvertAndalusia_I7425
54.60% MoriscoConvertAndalusia_I7425 + 45.40% Pre-RomanGirona_I3324
51.40% I8209_NE_Iberia_Greek_Empuries1 + 48.60% MoriscoConvertAndalusia_I7425
48.60% MoriscoConvertAndalusia_I7425 + 51.40% VasconicTribe_I8209
55.00% I8146_SE_Iberia_c.10-16CE + 45.00% I8210_NE_Iberia_Greek_Empuries1
38.00% I8341_NE_Iberia_Greek_Empuries1 + 62.00% MoriscoConvertAndalusia_I7425
53.80% MoriscoConvertAndalusia_I7425 + 46.20% VasconesTribeVasconia_I3759
43.80% I8146_SE_Iberia_c.10-16CE + 56.20% I8209_NE_Iberia_Greek_Empuries1
43.80% I8146_SE_Iberia_c.10-16CE + 56.20% VasconicTribe_I8209
50.00% I8146_SE_Iberia_c.10-16CE + 50.00% Pre-RomanGirona_I3324
49.80% MoriscoConvertAndalusia_I7425 + 50.20% VisigothIberianGirona_I12034
53.00% MoriscoConvertAndalusia_I7425 + 47.00% VasconesTribeVasconia_I3758
40.20% France_IA_NOR3-6 + 59.80% I3578_SE_Iberia_c.5-8CE
55.80% I8146_SE_Iberia_c.10-16CE + 44.20% I8202_NE_Iberia_RomP_Empuries1
56.00% CarthagoMaghrebiAndalusia_I7457 + 44.00% I8209_NE_Iberia_Greek_Empuries1
56.00% CarthagoMaghrebiAndalusia_I7457 + 44.00% VasconicTribe_I8209
37.40% I8344_NE_Iberia_Greek_Empuries1 + 62.60% MoriscoConvertAndalusia_I7425
74.80% EarlyMedievalIberiaGranada_I3981 + 25.20% France_IA_ATT26
52.00% MoriscoConvertAndalusia_I7425 + 48.00% RISE254_Szazhalombatta-Foldvar_Hungary_3631_years
66.80% CarthagoMaghrebiAndalusia_I7457 + 33.20% I8210_NE_Iberia_Greek_Empuries1
9.60% I1951_GD39_Ganj_Dareh_Iran_Neolithic + 90.40% I2215_Malak_Preslavets
78.00% EarlyMedievalIberiaGranada_I3981 + 22.00% NorthAlpineSouthDutch_AITI_50
68.40% I3578_SE_Iberia_c.5-8CE + 31.60% RISE61_Kyndelose_Denmark_4071_years
67.40% CarthagoMaghrebiAndalusia_I7457 + 32.60% I8202_NE_Iberia_RomP_Empuries1

[TH="align: right"] Distance to: [/TH]

[TD="bgcolor: #5AFF00, align: right"] 2.65302177 [/TD]

[TD="bgcolor: #64FF00, align: right"] 2.92854376 [/TD]

[TD="bgcolor: #69FF00, align: right"] 3.08006836 [/TD]

[TD="bgcolor: #6AFF00, align: right"] 3.11975635 [/TD]

[TD="bgcolor: #6AFF00, align: right"] 3.11975635 [/TD]

[TD="bgcolor: #6DFF00, align: right"] 3.19632199 [/TD]

[TD="bgcolor: #6DFF00, align: right"] 3.20203390 [/TD]

[TD="bgcolor: #6FFF00, align: right"] 3.25065043 [/TD]

[TD="bgcolor: #74FF00, align: right"] 3.42414192 [/TD]

[TD="bgcolor: #74FF00, align: right"] 3.42414192 [/TD]

[TD="bgcolor: #75FF00, align: right"] 3.45375158 [/TD]

[TD="bgcolor: #76FF00, align: right"] 3.47097273 [/TD]

[TD="bgcolor: #77FF00, align: right"] 3.51208831 [/TD]

[TD="bgcolor: #78FF00, align: right"] 3.51953647 [/TD]

[TD="bgcolor: #7AFF00, align: right"] 3.57885960 [/TD]

[TD="bgcolor: #7CFF00, align: right"] 3.63716307 [/TD]

[TD="bgcolor: #7CFF00, align: right"] 3.63716307 [/TD]

[TD="bgcolor: #7CFF00, align: right"] 3.64771225 [/TD]

[TD="bgcolor: #7CFF00, align: right"] 3.65015313 [/TD]

[TD="bgcolor: #7DFF00, align: right"] 3.67321991 [/TD]

[TD="bgcolor: #7DFF00, align: right"] 3.68131844 [/TD]

[TD="bgcolor: #7DFF00, align: right"] 3.68245342 [/TD]

[TD="bgcolor: #7EFF00, align: right"] 3.71253874 [/TD]

[TD="bgcolor: #7EFF00, align: right"] 3.71270840 [/TD]

[TD="bgcolor: #7EFF00, align: right"] 3.71461857 [/TD]
MoriscoConvertAndalusia_I7425
France_BA_NIED
Bul8_Balkans_BronzeAge

[TH="colspan: 2"] Target: Duarte
Distance: 1.4918% / 1.49180577 | R3P | ADC: 0.25x RC
[/TH]

[TD="align: right"] 43.8 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 33.4 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 22.8 [/TD]

[TD="colspan: 2"][/TD]

I8146_SE_Iberia_c.10-16CE
Bul8_Balkans_BronzeAge
scy010_Scythian
utigGLR003B1

[TH="colspan: 2"] Target: Duarte
Distance: 0.8209% / 0.82088388 | R4P | ADC: 0.25x RC
[/TH]

[TD="align: right"] 32.0 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 29.4 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 19.9 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 18.7 [/TD]

[TD="colspan: 2"][/TD]

I8146_SE_Iberia_c.10-16CE
I12648_SE_Iberia_c.10-16CE
Bul8_Balkans_BronzeAge
CuevadelaPalomaSpain_I3243
Roman-SoldierFN_2

[TH="colspan: 2"] Target: Duarte
Distance: 0.6776% / 0.67762082 | R5P | ADC: 0.25x RC
[/TH]

[TD="align: right"] 38.1 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 20.0 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 17.3 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 12.6 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 12.0 [/TD]

[TD="colspan: 2"][/TD]

I8146_SE_Iberia_c.10-16CE
Bul8_Balkans_BronzeAge
utigGLR003B1
scy304_Scythian
scy009_Scythian
Anatolia_N_Rev5

[TH="colspan: 2"] Target: Duarte
Distance: 0.1931% / 0.19310011 | R6P | ADC: 0.25x RC
[/TH]

[TD="align: right"] 25.2 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 24.6 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 17.6 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 14.7 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 11.6 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 6.3 [/TD]

[TD="colspan: 2"][/TD]

I12648_SE_Iberia_c.10-16CE
Bul8_Balkans_BronzeAge
I8146_SE_Iberia_c.10-16CE
MoriscoConvertAndalusia_I7425
RISE145_Polwica_Poland_3677_years
scy304_Scythian

[TH="colspan: 2"] Target: Duarte
Distance: 0.0662% / 0.06623697 | R7P | ADC: 0.25x RC
[/TH]

[TD="align: right"] 30.6 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 20.3 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 20.3 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 19.8 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 5.6 [/TD]

[TD="colspan: 2"][/TD]

[TD="align: right"] 3.4 [/TD]

[TD="colspan: 2"][/TD]



 
Last edited:
Thanks Duarte, I'd upvote but I'm out of juice. I think it's high time we start updating this spreadsheet again. I have quite a few updates pending. With Salento's help we can try to ascertain all available samples. Also, with Maciamo's expertise, we can see these samples be utilized as coherent groups for the ethnicity Checker.
 
Thanks Duarte, I'd upvote but I'm out of juice. I think it's high time we start updating this spreadsheet again. I have quite a few updates pending. With Salento's help we can try to ascertain all available samples. Also, with Maciamo's expertise, we can see these samples be utilized as coherent groups for the ethnicity Checker.

I'm the one who thanks to you, Salento and Maciamo for the great work that allows us to make an ancestry assessment much beyond the commercial calculators.
 
I'm the one who thanks to you, Salento and Maciamo for the great work that allows us to make an ancestry assessment much beyond the commercial calculators.

Thanks Duarte for consolidating the various samples :)
 
from: ... Genetic structure of 15,000y old North Africans associated with the Iberomaurusian

Grotte des Pigeons, Taforalt, Morocco:

Code:
TAF009_Dod_K12b,0.00,3.54,60.38,2.05,0.00,0.00,2.48,18.95,8.83,0.00,0.00,3.78
TAF010_Dod_K12b,0.00,0.55,63.90,3.27,0.00,0.17,1.39,18.70,5.98,0.00,0.00,6.05
TAF011_Dod_K12b,0.00,1.28,64.11,2.45,0.00,0.07,0.70,18.22,5.74,0.18,0.00,7.24
TAF012_Dod_K12b,0.00,1.79,63.81,0.80,0.44,0.00,3.27,16.18,5.76,0.59,0.00,7.35
TAF013_Dod_K12b,0.00,1.07,61.84,2.72,0.00,0.02,1.89,18.58,6.99,0.00,0.00,6.89
TAF014_Dod_K12b,0.00,0.74,62.76,2.95,0.00,0.00,2.12,18.14,5.34,0.00,0.00,7.95
TAF015_Dod_K12b,0.00,0.00,62.82,1.87,0.00,0.90,0.00,15.76,6.67,3.45,0.00,8.52

https://science.sciencemag.org/content/360/6388/548
 
from: ... Genetic structure of 15,000y old North Africans associated with the Iberomaurusian

Grotte des Pigeons, Taforalt, Morocco:

Code:
TAF009_Dod_K12b,0.00,3.54,60.38,2.05,0.00,0.00,2.48,18.95,8.83,0.00,0.00,3.78
TAF010_Dod_K12b,0.00,0.55,63.90,3.27,0.00,0.17,1.39,18.70,5.98,0.00,0.00,6.05
TAF011_Dod_K12b,0.00,1.28,64.11,2.45,0.00,0.07,0.70,18.22,5.74,0.18,0.00,7.24
TAF012_Dod_K12b,0.00,1.79,63.81,0.80,0.44,0.00,3.27,16.18,5.76,0.59,0.00,7.35
TAF013_Dod_K12b,0.00,1.07,61.84,2.72,0.00,0.02,1.89,18.58,6.99,0.00,0.00,6.89
TAF014_Dod_K12b,0.00,0.74,62.76,2.95,0.00,0.00,2.12,18.14,5.34,0.00,0.00,7.95
TAF015_Dod_K12b,0.00,0.00,62.82,1.87,0.00,0.90,0.00,15.76,6.67,3.45,0.00,8.52


https://science.sciencemag.org/content/360/6388/548

This is a fantastic addition to the overall set! These Iberomaurusian form correctly near Maciamo's grouping for Epipalaeolithic North Africa.

MP0nHWL.png
 
Status
Not open for further replies.
Back
Top