Geographic distribution
Distribution of haplogroup E-M81 in Europe, the Middle East & North Africa

E-M81 is found at an average frequency of 45% in the Maghreb and Libya, with peaks at over 60% in Tunisia as well as central and southern Morocco. It is especially common among Berber populations all over Northwest Africa, including the Tuaregs. Frequencies of over 75% have been reported among the Tuaregs of Burkina Faso and Mali.
In Europe, M81 is most common in Portugal (8%), Spain (4%), as well as in France (0-6%) and Italy (0-4%), where strong regional variations are observed. M81 is especially common in western Iberia, notably Extremadura (15.5%), Andalusia (13.5%), southern Portugal (11%), the Canary Islands (11%), north-west Castille (10%) and Galicia (10%). The highest percentage of E-M81 in Europe is found among the Pasiegos (30%, n=101), an isolated community living in the mountains of Cantabria.
Note the resemblance between the distribution of E-M81 and the African admixture from the Dodecad project.
Origins & History
Nowadays E-M81 is the dominant paternal lineage among Northwest Africans, and particularly Tuaregs, Mountain Moroccans, Tunisians and Libyans. Outside North Africa, M81 is far more frequent in parts of Iberia than anywhere else in Europe or the Near East. The M81 clade is defined by 150 other mutations beside M81 itself. This branch split from E1b1b during the late glacial period, approximately 14,000 years ago. It would be easy to assume that E-M81 colonised Northwest Africa during the Mesolithic or Neolithic period, then spread to southern and western Europe with the southern wave of Neolithic farmers that crossed over from Morocco to Iberia, then spread around western Europe with the Megalithic people. Yet, according to TMRCA (Time of Most Recent Common Ancestor) estimates, all carriers of this haplogroup descend from a common ancestor who lived only 2,100 years ago, about 5,000 years too late for the Neolithic hypothesis to hold ground.
The story of M81 is very unusual in that it is so young and diversified into a multitude of subclades within just a few centuries. M81 has two immediate subclades A5604 and M183 (aka PF2477 or PF2546). Under the latter no less than eight subclades have been identified at present: A930, A2227, CTS12227, FGC22844, PF2578, PF6794, MZ99 and Z5009. This indicates that a single man may have had nine sons who went on to have numerous children of their own. What is even more surprising is that these subclades do not show any consistent geographic pattern.
If the estimate of 2,100 years is correct, that would correspond approximately to the time when the Romans defeated the Carthaginians in what is now Tunisia. That would mean that the M81 lineage only started to expand in Roman times, and continued to diffuse within all the borders of the Roman Republic/Empire - not just North Africa, but also Iberia, France, Italy, Greece, Turkey and the Levant. This is a remarkably fast expansion that would have required a male line of considerable wealth and influence within the Roman Republic/Empire, and therefore probably a family of rich patricians or even a Roman emperor, not necessarily of Roman descent himself. The advantage of this hypothesis is that M81 is indeed found exclusively within the borders of the Roman Empire, and in a big part of the empire. Even within Britain it is found mainly in Wales, a region known to have served as a refuge for the Romano-British population during the Anglo-Saxon invasions.
Of course, the TMRCA is only an estimate and could vary by a few centuries. Therefore this lineage could actually have emerged a few centuries earlier, during the Phoenician/Carthaginian period. Indeed the distribution pattern and frequency of M81 matches much better the Phoenician maritime empire, with its origins in the Levant, and its dispersal along the cost of North Africa, but also Iberia, Sardinia and Sicily. In this scenario, M81 could have been the lineage of Carthaginian kings, or of a particularly prolific aristocratic familiy during the Carthaginian Republic. The merits of this hypothesis is that it would explain why M81 is so much more common in the Maghreb, and particularly in Tunisia, than in Italy today. The Carthaginians founded cities in Spain, including Carthago Nova (the New Carthage, now Cartagena in Murcia), but also in Sardinia and Sicily, where M81 is the most common today within Italy. The weak point of this hypothesis is that it doesn't explain how M81 reached places like France, Britain, Greece or Turkey, nor even northern Spain.
In whichever scenario, it is clear that M81 benefited from a potent founder effect in the Maghreb, a region that was first dominated by the Carthaginian elite, but quickly became one of the favourite regions of residence for the Roman elite within the empire (along with Spain, France and Greece). Therefore both hypotheses are plausible. A combination of the two scenarios could provide an even better explanation. M81 would first have spread with the Carthaginian elite, then once they were defeated by the Romans and annexed to the empire, their descendants would have been free to migrate to various parts of the empire from North Africa, Sicily, Sardinia and Iberia, some eventually reaching France and Britain. The original Phoenician M81 in the Levant could also have diffused across the Eastern Mediterranean over the centuries, during the Roman, Byzantine and Ottoman periods.
Whether origins of M81 lie in the Carthaginian or Roman elite, its parent clades M310.1 and Z827 would have originated in the Levant, and not in Northwest Africa. Z830, M310.1's brother clade, is almost exclusively Middle Eastern. M310.1 itself dates from the Late Paleolithic and could have come to Italy via Anatolia and Greece any time between the Late Glacial period and the Iron Age, including with Neolithic farmers, the Minoans, or the Etruscans.
In either case, it is likely that more M81 came into the Iberian peninsula during the Moorish period, when the Maghrebian Arabs conquered most of what is now Spain and Portugal, where they remained for over 700 years. The Moors also conquered Sicily.
E1b1b1b2a (M123)
Geographic distribution
Distribution of haplogroup E-M123 in Europe, the Middle East & North Africa

The highest frequencies of E-M123 are observed in Jordan (31% near the Dead Sea), Ethiopia (5-20%), Israel/Palestine (10-12% among the Palestinians and the Jews), among the Bedouins (8%), in Lebanon (5%), in North Africa (3-5%), Anatolia (3-6%) and southern Europe, particularly Italy (1 to 8%), in the Spanish region of Extremadura (4%), and the Balearic islands of Ibiza and Minorca (average 10%).
Subclades
Origins & History
E-M123 originated some 19,000 years ago, during the last Ice Age Its place of origin is uncertain, but it was probably in the Red Sea region, somewhere between the southern Levant and Ethiopia. Its main subclade E-M34 most probably emerged in the Levant about 15,000 years ago. Soon afterwards, M34 split into two branches, M84 and Z841, which were probably found in the Fertile Crescent during the Neolithic period. It is not clear at present whether they expanded beyond the Near East during the Neolithic period, but they might have been part of the Neolithic expansion to North Africa and Iberia alongside haplogroups T1a and/or R1b-V88. L791 and Z21466 have a mostly European distribution today and their ages point toward a Neolithic diffusion. The PF6759 subclade seems to have reached Sardinia during the Neolithic period. The descendants of L791, Y2947 and Y4971, only appeared around 3500 BCE, during the Late Neolithic or Chalcolithic period. The K257 and Y4970 branch emerged around 3000 BCE and is found in Iran, Armenia, Turkey, Russia, Greece, Italy and France, among others. It might be linked to the expansion of the Kura-Araxes culture from the southern Caucasus to Anatolia and Iran. It would then have spread to Greece and Italy alongside haplogroup J2a1 and T1a-P77. Y6923 also emerged around 3500 BCE, but became almost extinct. All modern carriers of this lineage descend from a common ancestor who lived only 1,200 years ago, and all are Ashkenazi Jews.
E-M34 lineages experienced a much more dramatic expansion during the Chalcolithic (Copper Age) period. CTS1096 split into three subclades around 7,500 to 7,000 years ago, a period that corresponds to the advent of the Copper Age around modern Kurdistan. These lineages continued to expand around the Middle East, Greece and Italy during the Bronze Age. Nowadays, the FGC18412 (aka Y5412) clade is the main variety of M123 found in Europe. Also downstream of CTS1096, the Y14891 and Z21018 clades are typically found among people of Jewish ancestry, while PF6391 and Z21421 are found in the Levant (Syria, Lebanon, Palestine, Jordan) and the Arabian peninsula. F1382 appears to have expanded during the Iron Age from the Levant to the Arabian peninsula, where it is almost exclusively found today.
Phoenician, Greek and Roman diffusions of E-M34
The classical antiquity brought new waves of colonisation across the Mediterranean. The first colonists were Phoenicians, who came from present-day Lebanon and the Tartus province of Syria. The Phoenicians possessed a variety of paternal lineages reflecting the complex ancient history of the Middle East. One of them was E-M34 (notably Levantine clades like Y15558 and Z21421), which makes up about 15% of modern Lebanese Y-DNA, but was probably higher before the Greek, Roman, Arabic, Byzantine, medieval crusader and Ottoman occupations altered the local gene pool. E-M34 is the main Middle Eastern variety of E1b1b and is thought to have arrived with the Proto-Semitic people in the Late Copper to Early Bronze Age. The Phoenicians would have spread E-M34 to Cyprus, Malta, Sicily, Sardinia, Ibiza and southern Iberia.
The ancient Greeks contributed to the rediffusion of more E-M34 (and E-V13) around places such as Cyprus, Sicily, southern Italy, Liguria, Provence, eastern Spain, and basically all part of the Classical ancient Greek world. Alexander's conquest of the Middle East would have taken Greek male lineages much further afield, perhaps as far as Afghanistan and Pakistan, although only at trace frequencies. The Greeks remained in control of the Middle East until the Roman conquest, then regained influence over the region during the Byzantine period. It is likely that most E-V13 in the Middle East is ultimately of Greek or Roman origin, although some might have come with Bronze Age Indo-European migrations via Iran.
The Etruscans, who may have come from western Anatolia, could have brought E-M34 to central Italy, which would then have been assimilated by the Romans. Migrations within the Roman Empire probably played a role, although a minor one, in the redistribution of E1b1b in Europe. The biggest genetic impact of the Romans/Italians outside of Italy appears to have been in Gaul (modern France, Belgium, southern Germany and Switzerland), probably because this was the closest region to Italy using the well-developed Roman road network (actually inherited from the Gauls themselves).
Famous individuals
E-V13 branch
Giuseppe Garibaldi (1807-1882), the general, politician and nationalist who played a large role in the history of Italy, probably belonged to haplogroup E-V13 based on the Y-DNA results from another Garibaldi from the same province in his ancestral Liguria.
The Wright Brothers, the inventors of the world's first successful airplane, belonged to haplogroup E-V13 (S7461 subclade). They were supposedly descended from John Wright (1488-1551), of Kelvedon Hall, Essex, England, which allowed the Wright Surname DNA Project to isolate their paternal lineage based on the matching haplotypes of over 20 participants descending from that lineage.
According to the DNA results of a relative, Google co-founder Larry Page (b. 1973) might belong to haplogroup E-V13. As of November 2016, he was the 12th richest person in the world.
E-M34 branch
The Harvey Y-DNA Genetic Project managed to retrace the ancestry and identify the Y-chromosomal haplogroup of William Harvey (1578 -1657), the first person to describe completely and in detail the systemic circulation and properties of blood being pumped to the body by the heart. He belonged to the subclade E-M34.
Gérard Lucotte et al. (2012) recovered the DNA of Napoleon Bonaparte from beard hair follicules and compared his Y-DNA to that of one of his present-day descendants, Charles Napoléon. They established that both men belonged to haplogroup E-M34, a subclade which is thought to have reached Mediterranean Europe from the Levant during the Neolithic period. Napoleon I had previously been identified by Lucotte's team as a member of mtDNA haplogroup H.
The acclaimed theoretical physicist Albert Einstein is presumed to have belonged to Y-haplogroup E-Z830 based on the results from a patrilineal descendant of Naphtali Hirsch Einstein, Albert Einstein's great-grand-father. Approximately 20% of Ashkenazi Jews belong to haplogroup E1b1b.
Steven Pinker is a Canadian experimental psychologist, cognitive scientist, linguist, and popular science author. He is Johnstone Family Professor in the Department of Psychology at Harvard University, and is known for his advocacy of evolutionary psychology and the computational theory of mind.
The American actor and producer Nicolas Cage (born 1964),has been found to belong to haplogroup E1b1b-M84. His real name is Nicolas Kim Coppola, and his paternal great-grand-father emigrated to the U.S. from the South Italian town of Bernalda in Basilicata. He is the nephew of screenwriter, film director and producer Francis Ford Coppola, who shares the same haplogroup.
E-M81 branch
The French footballer of Algerian origin Zinedine Zidane (born 1972), is a member of haplogroup E1b1b (M81) according to his brother's DNA test. Zidane was named the best European footballer of the past 50 years in the UEFA Golden Jubilee Poll.
Undetermined E1b1b branch
The remains of the great Italian Baroque painter Caravaggio (1571-1610) were excavated to confirm the circumstances of his mysterious death at the age of 38. His DNA was compared to modern carriers of the same surname. The study revealed that he belonged to haplogroup E1b1b1.
Ronny Decorte, a geneticist from the Catholic University of Leuven in Belgium, tested relatives of Adolf Hitler and determined that the Fürher belonged to haplogroup E1b1b. Ironically this haplogroup thought to be at the origin of Afro-Asiatic languages, which includes the Semitic languages and peoples that Hitler despised so much.
Sir David Attenborough (b. 1926), an English broadcaster and naturalist at the BBC explained in the Tree of Life how the Attenboroughs belonged to haplogroup E1b1b1. In 2002 he was named among the 100 Greatest Britons following a UK-wide vote. His brother is the producer, director and actor Richard Attenborough (b. 1923 - pictured), who won two Academy Awards for Gandhi in 1983.
Other famous members of haplogroup E1b1b
- Tom Conti (subclade E-M34) : is a Scottish actor, theatre director and novelist of Italian Scots descent. He has won a Tony Award for Best Actor in a Play in 1979 for his performance in Whose Life Is It Anyway? His haplogroup was revelaved to be E-M34 by BritainsDNA.
- George Stroumboulopoulos : is a Canadian television and radio personality. He is best known as formerly being a VJ for the Canadian music television channel MuchMusic and being the host of the CBC Television talk show George Stroumboulopoulos Tonight (formerly The Hour) from 2005 to 2014.
Read this article in other languages
Follow-up